Ludovic Orlando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9065530/publications.pdf Version: 2024-02-01

	5574	5394
31,872	82	164
citations	h-index	g-index
001	221	07044
221	221	2/944
docs citations	times ranked	citing authors
	31,872 citations 221 docs citations	31,872 82 citations h-index 221 221 docs citations 221 times ranked

#	Article	IF	CITATIONS
1	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	27.8	1,942
2	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	12.6	1,583
3	AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Research Notes, 2016, 9, 88.	1.4	1,255
4	mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics, 2013, 29, 1682-1684.	4.1	1,174
5	Population genomics of Bronze Age Eurasia. Nature, 2015, 522, 167-172.	27.8	1,166
6	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	12.6	895
7	Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 2012, 21, 2565-2573.	3.9	882
8	Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature, 2014, 505, 87-91.	27.8	821
9	Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 2010, 463, 757-762.	27.8	750
10	Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 2013, 499, 74-78.	27.8	717
11	An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia. Science, 2011, 334, 94-98.	12.6	675
12	Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 2011, 479, 359-364.	27.8	586
13	Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 2014, 506, 47-51.	27.8	505
14	The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature, 2014, 506, 225-229.	27.8	500
15	The Derived FOXP2 Variant of Modern Humans Was Shared with Neandertals. Current Biology, 2007, 17, 1908-1912.	3.9	487
16	Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago. Cell, 2015, 163, 571-582.	28.9	425
17	Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nature Protocols, 2014, 9, 1056-1082.	12.0	403
18	Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears. Cell, 2014, 157, 785-794.	28.9	363

#	Article	IF	CITATIONS
19	Postglacial viability and colonization in North America's ice-free corridor. Nature, 2016, 537, 45-49.	27.8	363
20	137 ancient human genomes from across the Eurasian steppes. Nature, 2018, 557, 369-374.	27.8	325
21	Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature, 2018, 553, 203-207.	27.8	304
22	The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 2017, 57, 690-704.	2.0	301
23	DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 2019, 28, 1857-1862.	3.9	300
24	Investigating the Potential Use of Environmental DNA (eDNA) for Genetic Monitoring of Marine Mammals. PLoS ONE, 2012, 7, e41781.	2.5	294
25	Neanderthals in central Asia and Siberia. Nature, 2007, 449, 902-904.	27.8	293
26	Ancient and modern environmental DNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130383.	4.0	292
27	The prehistoric peopling of Southeast Asia. Science, 2018, 361, 88-92.	12.6	291
28	mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics, 2011, 27, 2153-2155.	4.1	287
29	Glacial Survival of Boreal Trees in Northern Scandinavia. Science, 2012, 335, 1083-1086.	12.6	287
30	Genomic structure in Europeans dating back at least 36,200 years. Science, 2014, 346, 1113-1118.	12.6	287
31	Metaâ€barcoding of â€~dirt' DNA from soil reflects vertebrate biodiversity. Molecular Ecology, 2012, 21, 1966-1979.	3.9	276
32	Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature, 2015, 522, 81-84.	27.8	273
33	The genetic prehistory of the New World Arctic. Science, 2014, 345, 1255832.	12.6	264
34	Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 2017, 358, 659-662.	12.6	263
35	DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 2012, 21, 3647-3655.	3.9	262
36	The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science, 2018, 360, .	12.6	262

#	Article	IF	CITATIONS
37	Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5661-9.	7.1	260
38	Improving ancient DNA read mapping against modern reference genomes. BMC Genomics, 2012, 13, 178.	2.8	247
39	The ancestry and affiliations of Kennewick Man. Nature, 2015, 523, 455-458.	27.8	241
40	Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114.	12.6	241
41	Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology and Evolution, 2017, 1, 4.	7.8	223
42	Convergent genomic signatures of domestication in sheep and goats. Nature Communications, 2018, 9, 813.	12.8	220
43	Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (<i>Ovibos) Tj ETQq1 States of America, 2010, 107, 5675-5680.</i>	1 0.7843 7.1	14 rgBT /Ovi 208
44	Reconstructing ancient genomes and epigenomes. Nature Reviews Genetics, 2015, 16, 395-408.	16.3	197
45	Proteomic Analysis of a Pleistocene Mammoth Femur Reveals More than One Hundred Ancient Bone Proteins. Journal of Proteome Research, 2012, 11, 917-926.	3.7	196
46	Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell, 2019, 177, 1419-1435.e31.	28.9	195
47	Ancient genomic changes associated with domestication of the horse. Science, 2017, 356, 442-445.	12.6	185
48	Speciation with gene flow in equids despite extensive chromosomal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18655-18660.	7.1	183
49	Improving access to endogenous DNA in ancient bones and teeth. Scientific Reports, 2015, 5, 11184.	3.3	182
50	Bacterial natural transformation by highly fragmented and damaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19860-19865.	7.1	170
51	Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Research, 2014, 24, 454-466.	5.5	161
52	Evolutionary Genomics and Conservation of the Endangered Przewalski's Horse. Current Biology, 2015, 25, 2577-2583.	3.9	161
53	Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus , and brown bear, Ursus arctos , lineages. Current Biology, 2001, 11, 200-203.	3.9	160
54	Genomic Affinities of Two 7,000-Year-Old Iberian Hunter-Gatherers. Current Biology, 2012, 22, 1494-1499.	3.9	160

#	Article	IF	CITATIONS
55	Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature, 2018, 557, 418-423.	27.8	155
56	Improved reference genome for the domestic horse increases assembly contiguity and composition. Communications Biology, 2018, 1, 197.	4.4	148
57	A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals longâ€ŧerm vegetational stability. Molecular Ecology, 2012, 21, 1989-2003.	3.9	144
58	A Robust Framework for Microbial Archaeology. Annual Review of Genomics and Human Genetics, 2017, 18, 321-356.	6.2	144
59	Population genomics of the Viking world. Nature, 2020, 585, 390-396.	27.8	143
60	Ancient genomics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130387.	4.0	142
61	The origins and spread of domestic horses from the Western Eurasian steppes. Nature, 2021, 598, 634-640.	27.8	142
62	Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9589-E9597.	7.1	140
63	Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6889-97.	7.1	139
64	Revising the recent evolutionary history of equids using ancient DNA. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21754-21759.	7.1	136
65	Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature, 2019, 574, 103-107.	27.8	135
66	Ancient DNA analysis. Nature Reviews Methods Primers, 2021, 1, .	21.2	133
67	Comparing the performance of three ancient <scp>DNA</scp> extraction methods for highâ€throughput sequencing. Molecular Ecology Resources, 2016, 16, 459-469.	4.8	127
68	Mitochondrial Phylogenomics of Modern and Ancient Equids. PLoS ONE, 2013, 8, e55950.	2.5	123
69	Taming the Past: Ancient DNA and the Study of Animal Domestication. Annual Review of Animal Biosciences, 2017, 5, 329-351.	7.4	120
70	Animal domestication in the era of ancient genomics. Nature Reviews Genetics, 2020, 21, 449-460.	16.3	119
71	Revisiting Neandertal diversity with a 100,000 year old mtDNA sequence. Current Biology, 2006, 16, R400-R402.	3.9	116
72	Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds. BMC Genomics, 2017, 18, 565.	2.8	116

#	Article	IF	CITATIONS
73	True single-molecule DNA sequencing of a pleistocene horse bone. Genome Research, 2011, 21, 1705-1719.	5.5	114
74	Evaluating the impact of domestication and captivity on the horse gut microbiome. Scientific Reports, 2017, 7, 15497.	3.3	112
75	Genome-wide ancestry of 17th-century enslaved Africans from the Caribbean. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3669-3673.	7.1	110
76	Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nature Communications, 2013, 4, 2172.	12.8	103
77	Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Science Advances, 2016, 2, e1501682.	10.3	102
78	A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quaternary Science Reviews, 2013, 75, 161-168.	3.0	99
79	Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, .	12.6	98
80	Variola Virus in a 300-Year-Old Siberian Mummy. New England Journal of Medicine, 2012, 367, 2057-2059.	27.0	97
81	Ancient DNA and the Population Genetics of Cave Bears (Ursus spelaeus) Through Space and Time. Molecular Biology and Evolution, 2002, 19, 1920-1933.	8.9	88
82	Using Ancient DNA to Understand Evolutionary and Ecological Processes. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 573-598.	8.3	88
83	Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. Biology Letters, 2014, 10, 20140266.	2.3	87
84	Surprising migration and population size dynamics in ancient Iberian brown bears (Ursus arctos). Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5123-5128.	7.1	86
85	gargammel: a sequence simulator for ancient DNA. Bioinformatics, 2017, 33, 577-579.	4.1	85
86	Mitogenome sequencing reveals shallow evolutionary histories and recent divergence time between morphologically and ecologically distinct European whitefish (<i>Coregonus</i> spp.). Molecular Ecology, 2012, 21, 2727-2742.	3.9	83
87	Partial Genetic Turnover in Neandertals: Continuity in the East and Population Replacement in the West. Molecular Biology and Evolution, 2012, 29, 1893-1897.	8.9	82
88	Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nature Communications, 2013, 4, 2755.	12.8	82
89	Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years. Nature Ecology and Evolution, 2020, 4, 346-355.	7.8	82
90	Early cave art and ancient DNA record the origin of European bison. Nature Communications, 2016, 7, 13158.	12.8	81

#	Article	IF	CITATIONS
91	Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 2021, 600, 86-92.	27.8	81
92	EPAS1 Gain-of-Function Mutation Contributes to High-Altitude Adaptation in Tibetan Horses. Molecular Biology and Evolution, 2019, 36, 2591-2603.	8.9	80
93	Combining bleach and mild predigestion improves ancient <scp>DNA</scp> recovery from bones. Molecular Ecology Resources, 2017, 17, 742-751.	4.8	77
94	Geographic distribution of an extinct equid (Equus hydruntinus : Mammalia, Equidae) revealed by morphological and genetical analyses of fossils. Molecular Ecology, 2006, 15, 2083-2093.	3.9	76
95	Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae. BMC Evolutionary Biology, 2011, 11, 65.	3.2	76
96	Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Science Advances, 2022, 8, eabj9496.	10.3	76
97	Less effective selection leads to larger genomes. Genome Research, 2017, 27, 1016-1028.	5.5	75
98	Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. Current Biology, 2014, 24, R1035-R1037.	3.9	73
99	Evolutionary Patterns and Processes: Lessons from Ancient DNA. Systematic Biology, 2017, 66, syw059.	5.6	73
100	The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC Genomics, 2017, 18, 495.	2.8	73
101	Highâ€Throughput <scp>DNA</scp> sequencing of ancient wood. Molecular Ecology, 2018, 27, 1138-1154.	3.9	73
102	Ancient DNA analysis reveals woolly rhino evolutionary relationships. Molecular Phylogenetics and Evolution, 2003, 28, 485-499.	2.7	68
103	Ligation Bias in Illumina Next-Generation DNA Libraries: Implications for Sequencing Ancient Genomes. PLoS ONE, 2013, 8, e78575.	2.5	68
104	Islands in the ice: detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA Metaâ€barcoding. Molecular Ecology, 2012, 21, 1980-1988.	3.9	67
105	Experimental conditions improving inâ€solution target enrichment for ancient <scp>DNA</scp> . Molecular Ecology Resources, 2017, 17, 508-522.	4.8	67
106	Planning tiger recovery: Understanding intraspecific variation for effective conservation. Science Advances, 2015, 1, e1400175.	10.3	63
107	Ancient <scp>DNA</scp> analysis identifies marine mollusc shells as new metagenomic archives of the past. Molecular Ecology Resources, 2017, 17, 835-853.	4.8	62
108	Pros and cons of methylation-based enrichment methods for ancient DNA. Scientific Reports, 2015, 5, 11826.	3.3	61

#	Article	IF	CITATIONS
109	The Evolutionary Origin and Genetic Makeup of Domestic Horses. Genetics, 2016, 204, 423-434.	2.9	61
110	Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies. Royal Society Open Science, 2017, 4, 160997.	2.4	61
111	Joint Estimates of Heterozygosity and Runs of Homozygosity for Modern and Ancient Samples. Genetics, 2019, 212, 587-614.	2.9	61
112	A new genus of horse from Pleistocene North America. ELife, 2017, 6, .	6.0	61
113	Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (<i>Saiga tatarica</i>) since the Pleistocene. Molecular Ecology, 2010, 19, 4863-4875.	3.9	59
114	Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nature Genetics, 2016, 48, 152-158.	21.4	59
115	Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biology, 2019, 20, 29.	8.8	58
116	Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nature Communications, 2018, 9, 2945.	12.8	56
117	Shotgun microbial profiling of fossil remains. Molecular Ecology, 2014, 23, 1780-1798.	3.9	55
118	Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX. Molecular Biology and Evolution, 2016, 33, 3284-3298.	8.9	53
119	Human evolution: a tale from ancient genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150484.	4.0	51
120	Genome-wide Ancestry and Demographic History of African-Descendant Maroon Communities from French Guiana and Suriname. American Journal of Human Genetics, 2017, 101, 725-736.	6.2	50
121	Evidence for early dispersal of domestic sheep into Central Asia. Nature Human Behaviour, 2021, 5, 1169-1179.	12.0	50
122	Grey wolf genomic history reveals a dual ancestry of dogs. Nature, 2022, 607, 313-320.	27.8	48
123	Improved de novo genomic assembly for the domestic donkey. Science Advances, 2018, 4, eaaq0392.	10.3	46
124	Early pastoral economies along the Ancient Silk Road: Biomolecular evidence from the Alay Valley, Kyrgyzstan. PLoS ONE, 2018, 13, e0205646.	2.5	46
125	Population Demography and Genetic Diversity in the Pleistocene Cave Lion. Open Quaternary, 2015, 1, 4.	1.0	44
126	Zonkey: A simple, accurate and sensitive pipeline to genetically identify equine F1-hybrids in archaeological assemblages. Journal of Archaeological Science, 2017, 78, 147-157.	2.4	44

#	Article	IF	CITATIONS
127	New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA. BioTechniques, 2015, 59, 368-371.	1.8	43
128	Ancient DNA Clarifies the Evolutionary History of American Late Pleistocene Equids. Journal of Molecular Evolution, 2008, 66, 533-538.	1.8	42
129	An epigenetic window into the past?. Science, 2014, 345, 511-512.	12.6	41
130	DNA from extinct giant lemurs links archaeolemurids to extant indriids. BMC Evolutionary Biology, 2008, 8, 121.	3.2	40
131	Statistical Guidelines for Detecting Past Population Shifts Using Ancient DNA. Molecular Biology and Evolution, 2012, 29, 2241-2251.	8.9	40
132	Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Molecular Biology and Evolution, 2017, 34, msw261.	8.9	40
133	Next-generation sequencing offers new insights into DNA degradation. Trends in Biotechnology, 2012, 30, 364-368.	9.3	39
134	Using Classical Population Genetics Tools with Heterochroneous Data: Time Matters!. PLoS ONE, 2009, 4, e5541.	2.5	37
135	Major transitions in human evolution revisited: A tribute to ancientÂDNA. Journal of Human Evolution, 2015, 79, 4-20.	2.6	37
136	Mitochondrial genomes reveal the extinct <i>Hippidion</i> as an outgroup to all living equids. Biology Letters, 2015, 11, 20141058.	2.3	36
137	Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology. Biogeosciences, 2017, 14, 2741-2754.	3.3	36
138	Improving the performance of true single molecule sequencing for ancient DNA. BMC Genomics, 2012, 13, 177.	2.8	35
139	The first aurochs genome reveals the breeding history of British and European cattle. Genome Biology, 2015, 16, 225.	8.8	35
140	meta <scp>BIT</scp> , an integrative and automated metagenomic pipeline for analysing microbial profiles from highâ€ŧhroughput sequencing shotgun data. Molecular Ecology Resources, 2016, 16, 1415-1427.	4.8	35
141	Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland. Molecular Ecology Resources, 2020, 20, 1191-1205.	4.8	34
142	Out of the Pacific and Back Again: Insights into the Matrilineal History of Pacific Killer Whale Ecotypes. PLoS ONE, 2011, 6, e24980.	2.5	33
143	A southern African origin and cryptic structure in the highly mobile plains zebra. Nature Ecology and Evolution, 2018, 2, 491-498.	7.8	32
144	Late Quaternary horses in Eurasia in the face of climate and vegetation change. Science Advances, 2018, 4, eaar5589.	10.3	32

#	Article	IF	CITATIONS
145	The Microcephalin Ancestral Allele in a Neanderthal Individual. PLoS ONE, 2010, 5, e10648.	2.5	31
146	Spotted phenotypes in horses lost attractiveness in the Middle Ages. Scientific Reports, 2016, 6, 38548.	3.3	31
147	Origin and Evolution of Deleterious Mutations in Horses. Genes, 2019, 10, 649.	2.4	31
148	Ancient Genomes Reveal Unexpected Horse Domestication and Management Dynamics. BioEssays, 2020, 42, e1900164.	2.5	31
149	Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Molecular Ecology, 2021, 30, 6144-6161.	3.9	30
150	Annotation of the Protein Coding Regions of the Equine Genome. PLoS ONE, 2015, 10, e0124375.	2.5	29
151	Decline of genetic diversity in ancient domestic stallions in Europe. Science Advances, 2018, 4, eaap9691.	10.3	29
152	Unveiling the Ecological Applications of Ancient DNA From Mollusk Shells. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	29
153	Conceptual bases for quantifying the role of the environment on gene evolution: the participation of positive selection and neutral evolution. Biological Reviews, 2007, 82, 551-572.	10.4	28
154	Assessing DNA Sequence Alignment Methods for Characterizing Ancient Genomes and Methylomes. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	27
155	Equids. Current Biology, 2015, 25, R973-R978.	3.9	25
156	Detecting Signatures of Positive Selection along Defined Branches of a Population Tree Using LSD. Molecular Biology and Evolution, 2018, 35, 1520-1535.	8.9	25
157	Morphological Convergence in Hippidion and Equus (Amerhippus) South American Equids Elucidated by Ancient DNA Analysis. Journal of Molecular Evolution, 2003, 57, S29-S40.	1.8	24
158	Authentication and Assessment of Contamination in Ancient DNA. Methods in Molecular Biology, 2019, 1963, 163-194.	0.9	23
159	Genomics and the Evolutionary History of Equids. Annual Review of Animal Biosciences, 2021, 9, 81-101.	7.4	22
160	A single-nucleotide mutation within the TBX3 enhancer increased body size in Chinese horses. Current Biology, 2022, 32, 480-487.e6.	3.9	21
161	DamMet: ancient methylome mapping accounting for errors, true variants, and post-mortem DNA damage. GigaScience, 2019, 8, .	6.4	20
162	Heterogeneous Hunter-Gatherer and Steppe-Related Ancestries in Late Neolithic and Bell Beaker Genomes from Present-Day France. Current Biology, 2021, 31, 1072-1083.e10.	3.9	20

#	Article	IF	CITATIONS
163	First evidence of Equus asinus L. in the Chalcolithic disputes the Phoenicians as the first to introduce donkeys into the Iberian Peninsula. Journal of Archaeological Science, 2013, 40, 4483-4490.	2.4	19
164	The origin of ambling horses. Current Biology, 2016, 26, R697-R699.	3.9	19
165	Oral health status in historic population: Macroscopic and metagenomic evidence. PLoS ONE, 2018, 13, e0196482.	2.5	19
166	Sexing Viking Age horses from burial and non-burial sites in Iceland using ancient DNA. Journal of Archaeological Science, 2019, 101, 115-122.	2.4	19
167	The Evolutionary and Historical Foundation of the Modern Horse: Lessons from Ancient Genomics. Annual Review of Genetics, 2020, 54, 563-581.	7.6	17
168	A genomewide catalogue of single nucleotide polymorphisms in whiteâ€beaked and Atlantic whiteâ€sided dolphins. Molecular Ecology Resources, 2016, 16, 266-276.	4.8	16
169	Accurate continuous geographic assignment from low- to high-density SNP data. Bioinformatics, 2016, 32, 1106-1108.	4.1	16
170	Back to the roots and routes of dromedary domestication. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6588-6590.	7.1	13
171	No particular genomic features underpin the dramatic economic consequences of 17th century plague epidemics in Italy. IScience, 2021, 24, 102383.	4.1	13
172	Napoleon Bonaparte and the fate of an Amazonian rat: new data on the taxonomy of Mesomys hispidus (Rodentia: Echimyidae). Molecular Phylogenetics and Evolution, 2003, 27, 113-120.	2.7	12
173	Amplification of TruSeq ancient DNA libraries with AccuPrime Pfx: consequences on nucleotide misincorporation and methylation patterns. Science and Technology of Archaeological Research, 2015, 1, 1-9.	2.4	12
174	Vibrio tapetis Displays an Original Type IV Secretion System in Strains Pathogenic for Bivalve Molluscs. Frontiers in Microbiology, 2018, 9, 227.	3.5	12
175	Ancient Epigenomics. Population Genomics, 2018, , 75-111.	0.5	11
176	Performance and automation of ancient DNA capture with RNA hyRAD probes. Molecular Ecology Resources, 2022, 22, 891-907.	4.8	11
177	A 400,000â€yearâ€old mitochondrial genome questions phylogenetic relationships amongst archaic hominins. BioEssays, 2014, 36, 598-605.	2.5	9
178	"Adopt-a-Tissue―Initiative Advances Efforts to Identify Tissue-Specific Histone Marks in the Mare. Frontiers in Genetics, 2021, 12, 649959.	2.3	8
179	Assessing the predictive taxonomic power of the bony labyrinth 3D shape in horses, donkeys and their F1-hybrids. Journal of Archaeological Science, 2021, 131, 105383.	2.4	8
180	Historical management of equine resources in France from the Iron Age to the Modern Period. Journal of Archaeological Science: Reports, 2021, 40, 103250.	0.5	8

#	Article	IF	CITATIONS
181	Does the 43 bp sequence from an 800 000 year old Cretan dwarf elephantid really rewrite the textbook on mammoths?. Biology Letters, 2007, 3, 58-60.	2.3	7
182	Late Bronze Age cultural origins of dairy pastoralism in Mongolia. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12083-12085.	7.1	7
183	The mules that are not mules - metrics, morphology, archaeogenomics and mtDNA d-loop diversity in equids from Roman Switzerland. Journal of Archaeological Science, 2020, 123, 105253.	2.4	7
184	Horse males became over-represented in archaeological assemblages during the Bronze Age. Journal of Archaeological Science: Reports, 2020, 31, 102364.	0.5	7
185	Comparison of the Equine Reference Sequence with Its Sanger Source Data and New Illumina Reads. PLoS ONE, 2015, 10, e0126852.	2.5	6
186	Ancient DNA and human evolution. Journal of Human Evolution, 2015, 79, 1-3.	2.6	6
187	Mitochondrial Genetic Diversity of Eurasian Red Squirrels (Sciurus vulgaris) from Denmark. Journal of Heredity, 2015, 106, 719-727.	2.4	6
188	Positive selection in the SLC11A1 gene in the family Equidae. Immunogenetics, 2016, 68, 353-364.	2.4	6
189	An Ancient DNA Perspective on Horse Evolution. Population Genomics, 2018, , 325-351.	0.5	6
190	Mammoth and Elephant Phylogenetic Relationships: <i>Mammut Americanum</i> , the Missing Outgroup. Evolutionary Bioinformatics, 2007, 3, 117693430700300.	1.2	5
191	Investigating ancient animal economies and exchange in Kyrgyzstan's Alay Valley. Antiquity, 2019, 93, .	1.0	5
192	CASCADE: A Custom-Made Archiving System for the Conservation of Ancient DNA Experimental Data. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	4
193	EVOSHEEP: the makeup of sheep breeds in the ancient Near East. Antiquity, 2021, 95, .	1.0	4
194	Interdisciplinary Analysis of the Lehi Horse: Implications for Early Historic Horse Cultures of the North American West. American Antiquity, 0, , 1-21.	1.1	4
195	Struct-f4: a Rcpp package for ancestry profile and population structure inference from <i>f</i> 4-statistics. Bioinformatics, 2022, 38, 2070-2071.	4.1	4
196	Ancient DNA refines taxonomic classification of Roman equids north of the Alps, elaborated with osteomorphology and geometric morphometrics. Journal of Archaeological Science, 2022, 143, 105624.	2.4	4
197	Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae. BMC Genomics, 2020, 21, 677.	2.8	3
198	Uncovering Signatures of DNA Methylation in Ancient Plant Remains From Patterns of Post-mortem DNA Damage. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	3

#	Article	IF	CITATIONS
199	mapDATAge: a ShinyR package to chart ancient DNA data through space and time. Bioinformatics, 2022, 38, 3992-3994.	4.1	3
200	Mammoth and elephant phylogenetic relationships: Mammut americanum, the missing outgroup. Evolutionary Bioinformatics, 2007, 3, 45-51.	1.2	2
201	Assessing the impact of USERâ€treatment on hyRAD capture applied to ancient DNA. Molecular Ecology Resources, 2022, 22, 2262-2274.	4.8	2
202	Filling Important Gaps in the Genomic History of Southwest Asia. Cell, 2020, 181, 966-968.	28.9	1
203	Sex in the city: Uncovering sex-specific management of equine resources from prehistoric times to the Modern Period in France. Journal of Archaeological Science: Reports, 2022, 41, 103341.	0.5	1
204	Twelve Years of Neandertal Genetic Discoveries: State-of-the-Art and Future Challenges. Vertebrate Paleobiology and Paleoanthropology, 2011, , 223-238.	0.5	0