List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9065298/publications.pdf Version: 2024-02-01

YUANVU HUANC

#	Article	IF	CITATIONS
1	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	4.8	124
2	Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy. Bioactive Materials, 2022, 9, 590-601.	8.6	33
3	Possibility for double optimization of siRNA intracellular delivery efficiency and antibacterial activity: Structure screening of pH-sensitive triblock amphiphilic polycation micelles. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112178.	2.5	2
4	Heterostructures Made of Upconversion Nanoparticles and Metal–Organic Frameworks for Biomedical Applications. Advanced Science, 2022, 9, e2103911.	5.6	49
5	Substrate-Free Dissolvable Microneedles with Barbed Structure Prepared by Modified Dual-Moulding Processes. , 2022, , .		0
6	Ionizable liposomal siRNA therapeutics enables potent and persistent treatment of Hepatitis B. Signal Transduction and Targeted Therapy, 2022, 7, 38.	7.1	17
7	Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Science Advances, 2022, 8, eabm1418.	4.7	46
8	Multivalent Engineering of Exosomes with Activatable Aptamer Probes for Specific Regulation and Monitoring of Cell Targeting. Analytical Chemistry, 2022, 94, 3840-3848.	3.2	11
9	Biosafety materials: Ushering in a new era of infectious disease diagnosis and treatment with the CRISPR/Cas system. Biosafety and Health, 2022, 4, 70-78.	1.2	10
10	mRNA vaccines for COVID-19 and diverse diseases. Journal of Controlled Release, 2022, 345, 314-333.	4.8	50
11	Preparation and Evaluation of Rationally Designed Polymers for Efficient Endosomal Escape of siRNA. Biomaterial Engineering, 2022, , 181-197.	0.1	0
12	Cell membrane-engineered nanoparticles for cancer therapy. Journal of Materials Chemistry B, 2022, 10, 7161-7172.	2.9	12
13	Conscription of Immune Cells by Lightâ€Activatable Silencing NKâ€Derived Exosome (LASNEO) for Synergetic Tumor Eradication. Advanced Science, 2022, 9, .	5.6	30
14	siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment. Nano Research, 2022, 15, 9160-9168.	5.8	10
15	Imaging-guided/improved diseases management for immune-strategies and beyond. Advanced Drug Delivery Reviews, 2022, 188, 114446.	6.6	8
16	Rolling microneedle electrode array (RoMEA) empowered nucleic acid delivery and cancer immunotherapy. Nano Today, 2021, 36, 101017.	6.2	37
17	Recent advances in photothermal and RNA interfering synergistic therapy. Chinese Chemical Letters, 2021, 32, 1010-1016.	4.8	33
18	Shear-responsive peptide/siRNA complexes as lung-targeting gene vectors. Chinese Chemical Letters, 2021, 32, 1731-1736.	4.8	18

#	Article	IF	CITATIONS
19	A novel polyethyleneimine-decorated FeOOH nanoparticle for efficient siRNA delivery. Chinese Chemical Letters, 2021, 32, 102-106.	4.8	21
20	Pressure controllable aptamers picking strategy by targets competition. Chinese Chemical Letters, 2021, 32, 218-220.	4.8	11
21	Advanced microfluidic devices for cell electroporation and manipulation. , 2021, , 105-123.		3
22	siRNA Design and GalNAc-Empowered Hepatic Targeted Delivery. Methods in Molecular Biology, 2021, 2282, 77-100.	0.4	6
23	Core Role of Hydrophobic Core of Polymeric Nanomicelle in Endosomal Escape of siRNA. Nano Letters, 2021, 21, 3680-3689.	4.5	58
24	Advances of mRNA vaccines for COVID-19: A new prophylactic revolution begins. Asian Journal of Pharmaceutical Sciences, 2021, 16, 263-264.	4.3	8
25	A Near-Infrared-II Polymer with Tandem Fluorophores Demonstrates Superior Biodegradability for Simultaneous Drug Tracking and Treatment Efficacy Feedback. ACS Nano, 2021, 15, 5428-5438.	7.3	79
26	Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduction and Targeted Therapy, 2021, 6, 227.	7.1	56
27	Membraneâ€destabilizing ionizable lipid empowered imagingâ€guided siRNA delivery and cancer treatment. Exploration, 2021, 1, 35-49.	5.4	106
28	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	5.4	27
29	Progress of Photodynamic and RNAi Combination Therapy in Cancer Treatment. ACS Biomaterials Science and Engineering, 2021, 7, 4420-4429.	2.6	17
30	Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS Applied Materials & Interfaces, 2021, 13, 2218-2229.	4.0	25
31	Nano-herb medicine and PDT induced synergistic immunotherapy for colon cancer treatment. Biomaterials, 2021, 269, 120654.	5.7	60
32	Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. Molecular Therapy - Nucleic Acids, 2020, 19, 581-601.	2.3	74
33	Induction of lipid droplets in THP-1 macrophages by multi-walled carbon nanotubes in a diameter-dependent manner: A transcriptomic study. Toxicology Letters, 2020, 332, 65-73.	0.4	23
34	Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle. Bioactive Materials, 2020, 5, 1053-1061.	8.6	49
35	Transcriptomic analysis revealed that multi-walled carbon nanotubes diameter-dependently induced pyroptosis in THP-1 macrophages. NanoImpact, 2020, 20, 100270.	2.4	13
36	Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study. Small, 2020, 16, e2003290.	5.2	11

#	Article	IF	CITATIONS
37	Bioimaging: Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study (Small 37/2020). Small, 2020, 16, 2070203.	5.2	0
38	Viral Proteinâ€Pseudotyped and siRNAâ€Electroporated Extracellular Vesicles for Cancer Immunotherapy. Advanced Functional Materials, 2020, 30, 2006515.	7.8	37
39	Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy. ACS Applied Polymer Materials, 2020, 2, 4289-4305.	2.0	43
40	The microgravity enhanced polymer-mediated siRNA gene silence by improving cellular uptake. Biophysics Reports, 2020, 6, 266-277.	0.2	6
41	Therapeutic siRNA: state of the art. Signal Transduction and Targeted Therapy, 2020, 5, 101.	7.1	674
42	A photo-triggerable aptamer nanoswitch for spatiotemporal controllable siRNA delivery. Nanoscale, 2020, 12, 10939-10943.	2.8	23
43	ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered Synergistic Cancer Treatment. ACS Applied Materials & Interfaces, 2020, 12, 32289-32300.	4.0	49
44	The challenge and prospect of mRNA therapeutics landscape. Biotechnology Advances, 2020, 40, 107534.	6.0	221
45	Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials, 2020, 242, 119925.	5.7	161
46	Transdermal Delivery of Nucleic Acid Mediated by Punching and Electroporation. Methods in Molecular Biology, 2020, 2050, 101-112.	0.4	7
47	Clinical advances of siRNA therapeutics. Journal of Gene Medicine, 2019, 21, e3097.	1.4	120
48	RNAi therapeutic and its innovative biotechnological evolution. Biotechnology Advances, 2019, 37, 801-825.	6.0	196
49	Continuous Vector-free Gene Transfer with a Novel Microfluidic Chip and Nanoneedle Array. Current Drug Delivery, 2018, 16, 164-170.	0.8	17
50	Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape. Nano Letters, 2018, 18, 6301-6311.	4.5	61
51	A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy. Journal of the American Chemical Society, 2018, 140, 16264-16274.	6.6	159
52	Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11454-11459.	3.3	58
53	Efficient delivery of nucleic acid molecules into skin by combined use of microneedle roller and flexible interdigitated electroporation array. Theranostics, 2018, 8, 2361-2376.	4.6	51
54	siRNA Knockdown of RRM2 Effectively Suppressed Pancreatic Tumor Growth Alone or Synergistically with Doxorubicin. Molecular Therapy - Nucleic Acids, 2018, 12, 805-816.	2.3	52

#	Article	IF	CITATIONS
55	Preclinical and Clinical Advances of GalNAc-Decorated Nucleic Acid Therapeutics. Molecular Therapy - Nucleic Acids, 2017, 6, 116-132.	2.3	221
56	Elaboration on the Distribution of Hydrophobic Segments in the Chains of Amphiphilic Cationic Polymers for Small Interfering RNA Delivery. ACS Applied Materials & Interfaces, 2017, 9, 32463-32474.	4.0	27
57	siRNA mediated inhibition of pancreatic tumor growth and. Journal of Controlled Release, 2017, 259, e179-e180.	4.8	1
58	The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy. Theranostics, 2017, 7, 3432-3445.	4.6	33
59	Pharmacokinetic Behaviors of Intravenously Administered siRNA in Glandular Tissues. Theranostics, 2016, 6, 1528-1541.	4.6	45
60	pH-Sensitive Nanomicelles for High-Efficiency siRNA Delivery in Vitro and in Vivo: An Insight into the Design of Polycations with Robust Cytosolic Release. Nano Letters, 2016, 16, 6916-6923.	4.5	71
61	Systemic and tumor-targeted delivery of siRNA by cyclic NGR and isoDGR motif-containing peptides. Biomaterials Science, 2016, 4, 494-510.	2.6	21
62	Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials, 2016, 91, 44-56.	5.7	186
63	The Promising Nanocarrier for Doxorubicin and siRNA Co-delivery by PDMAEMA-based Amphiphilic Nanomicelles. ACS Applied Materials & Interfaces, 2016, 8, 4347-4356.	4.0	76
64	Systemic Administration of siRNA via cRGD-containing Peptide. Scientific Reports, 2015, 5, 12458.	1.6	26
65	Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery. Biomaterials, 2015, 48, 45-55.	5.7	63
66	A Pliable Electroporation Patch (ep-Patch) for Efficient Delivery of Nucleic Acid Molecules into Animal Tissues with Irregular Surface Shapes. Scientific Reports, 2015, 5, 7618.	1.6	24
67	Adaptive Amphiphilic Dendrimerâ€Based Nanoassemblies as Robust and Versatile siRNA Delivery Systems. Angewandte Chemie - International Edition, 2014, 53, 11822-11827.	7.2	181
68	Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. Journal of Controlled Release, 2014, 176, 104-114.	4.8	102
69	Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery. Acta Biomaterialia, 2013, 9, 7746-7757.	4.1	60
70	The effect of guanidinylation of PEGylated poly(2-aminoethyl methacrylate) on the systemic delivery of siRNA. Biomaterials, 2013, 34, 3120-3131.	5.7	46
71	Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. Nanoscale, 2013, 5, 4291.	2.8	92
72	Functionalized Nanoscale Micelles Improve Drug Delivery for Cancer Therapy in Vitro and in Vivo. Nano Letters, 2013, 13, 2528-2534.	4.5	178

#	Article	IF	CITATIONS
73	Ultrabright and Multicolorful Fluorescence of Amphiphilic Polyethyleneimine Polymer Dots for Efficiently Combined Imaging and Therapy. Scientific Reports, 2013, 3, 3036.	1.6	78

Binary and ternary complexes based on polycaprolactone-graft-poly (N, N-dimethylaminoethyl) Tj ETQq0 0 0 rgBT / $\frac{10}{5.7}$ rf 50 702

75	An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab on A Chip, 2011, 11, 163-172.	3.1	56
76	Elimination Pathways of Systemically Delivered siRNA. Molecular Therapy, 2011, 19, 381-385.	3.7	125
77	Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery. Biomaterials, 2011, 32, 8730-8742.	5.7	62
78	Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials, 2011, 32, 879-889.	5.7	97
79	Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials, 2011, 32, 4283-4292.	5.7	79
80	A parylene-based flexible electroporation chip applicable for in vivo gene and siRNA delivery. , 2011, , .		5
81	Systemic Administration of Combinatorial dsiRNAs via Nanoparticles Efficiently Suppresses HIV-1 Infection in Humanized Mice. Molecular Therapy, 2011, 19, 2228-2238.	3.7	149
82	An estrogen receptor α suppressor, microRNAâ€22, is downregulated in estrogen receptor αâ€positive human breast cancer cell lines and clinical samples. FEBS Journal, 2010, 277, 1684-1694.	2.2	148
83	Comprehensive analysis of sequence-specific stability of siRNA. FASEB Journal, 2010, 24, 4844-4855.	0.2	38
84	Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano, 2010, 4, 5505-5511.	7.3	370
85	Comprehensive analysis of sequenceâ€specific stability of siRNA. FASEB Journal, 2010, 24, 4844-4855.	0.2	7