List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9065033/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	MqsR toxin as a biotechnological tool for plant pathogen bacterial control. Scientific Reports, 2022, 12, 2794.	1.6	5
2	Overexpression of CsSAMT in Citrus sinensis Induces Defense Response and Increases Resistance to Xanthomonas citri subsp. citri. Frontiers in Plant Science, 2022, 13, 836582.	1.7	2
3	Screening of plant growth-promoting bacteria isolated from sugarcane. Semina:Ciencias Agrarias, 2022, 43, 1757-1768.	0.1	0
4	Modified Monosaccharides Content of Xanthan Gum Impairs Citrus Canker Disease by Affecting the Epiphytic Lifestyle of Xanthomonas citri subsp. citri. Microorganisms, 2021, 9, 1176.	1.6	8
5	GC-TOF/MS-based metabolomics analysis to investigate the changes driven by N-Acetylcysteine in the plant-pathogen Xanthomonas citri subsp. citri. Scientific Reports, 2021, 11, 15558.	1.6	3
6	Overexpression of mqsR in Xylella fastidiosa Leads to a Priming Effect of Cells to Copper Stress Tolerance. Frontiers in Microbiology, 2021, 12, 712564.	1.5	3
7	Severity assessment in the Nicotiana tabacum-Xylella fastidiosa subsp. pauca pathosystem: design and interlaboratory validation of a standard area diagram set. Tropical Plant Pathology, 2020, 45, 710-722.	0.8	8
8	Overexpression of Citrus reticulata SAMT in Nicotiana tabacum increases MeSA volatilization and decreases Xylella fastidiosa symptoms. Planta, 2020, 252, 103.	1.6	5
9	<i>Citrus reticulata</i> CrRAP2.2 Transcriptional Factor Shares Similar Functions to the <i>Arabidopsis</i> Homolog and Increases Resistance to <i>Xylella fastidiosa</i> . Molecular Plant-Microbe Interactions, 2020, 33, 519-527.	1.4	2
10	Expression Quantitative Trait Loci (eQTL) mapping for callose synthases in intergeneric hybrids of Citrus challenged with the bacteria Candidatus Liberibacter asiaticus. Genetics and Molecular Biology, 2020, 43, e20190133.	0.6	1
11	The <i>ecnA</i> Antitoxin Is Important Not Only for Human Pathogens: Evidence of Its Role in the Plant Pathogen <i>Xanthomonas citri</i> subsp. <i>citri</i> . Journal of Bacteriology, 2019, 201, .	1.0	10
12	Comparative genome analysis of Phyllosticta citricarpa and Phyllosticta capitalensis, two fungi species that share the same host. BMC Genomics, 2019, 20, 554.	1.2	20
13	Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. BMC Genomics, 2019, 20, 110.	1.2	26
14	Citrus biotechnology: What has been done to improve disease resistance in such an important crop?. Biotechnology Research and Innovation, 2019, 3, 95-109.	0.3	26
15	High-density linkage maps for Citrus sunki and Poncirus trifoliata using DArTseq markers. Tree Genetics and Genomes, 2018, 14, 1.	0.6	26
16	Persistence in Phytopathogenic Bacteria: Do We Know Enough?. Frontiers in Microbiology, 2018, 9, 1099.	1.5	92
17	QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genomics, 2017, 18, 289.	1.2	54
18	Ectopic Expression of <i>Xylella fastidiosa rpfF</i> Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity. Molecular Plant-Microbe Interactions, 2017, 30, 866-875.	1.4	27

#	Article	IF	CITATIONS
19	MAT gene idiomorphs suggest a heterothallic sexual cycle in the citrus pathogen Phyllosticta citricarpa. European Journal of Plant Pathology, 2017, 147, 325-337.	0.8	21
20	Type II Toxin-Antitoxin Distribution and Adaptive Aspects on Xanthomonas Genomes: Focus on Xanthomonas citri. Frontiers in Microbiology, 2016, 7, 652.	1.5	27
21	The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation. Frontiers in Microbiology, 2016, 7, 904.	1.5	47
22	LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects. BMC Genomics, 2016, 17, 623.	1.2	35
23	Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2. Tropical Plant Pathology, 2016, 41, 341-349.	0.8	20
24	Draft Genome Sequence of 11399, a Transformable Citrus-Pathogenic Strain of Xylella fastidiosa. Genome Announcements, 2016, 4, .	0.8	12
25	The ATP-dependent RNA helicase HrpB plays an important role in motility and biofilm formation in Xanthomonas citri subsp. citri. BMC Microbiology, 2016, 16, 55.	1.3	36
26	<i>N</i> â€acetylcysteine interferes with the biofilm formation, motility and epiphytic behaviour of <i>Xanthomonas citri</i> subsp. <i>citri</i> . Plant Pathology, 2016, 65, 561-569.	1.2	20
27	Differential colonization patterns of <i>Xylella fastidiosa</i> infecting citrus genotypes. Plant Pathology, 2015, 64, 1259-1269.	1.2	36
28	Transcriptional profile of sweet orange in response to chitosan and salicylic acid. BMC Genomics, 2015, 16, 288.	1.2	40
29	Expression of <i>Xylella fastidiosa</i> RpfF in Citrus Disrupts Signaling in <i>Xanthomonas citri</i> subsp. <i>citri</i> and Thereby Its Virulence. Molecular Plant-Microbe Interactions, 2014, 27, 1241-1252.	1.4	27
30	Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32, 656-662.	9.4	572
31	Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Annals of Microbiology, 2013, 63, 533-540.	1.1	49
32	RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BMC Genomics, 2013, 14, 676.	1.2	59
33	N-Acetylcysteine in Agriculture, a Novel Use for an Old Molecule: Focus on Controlling the Plant–Pathogen Xylella fastidiosa. PLoS ONE, 2013, 8, e72937.	1.1	57
34	Global Expression Profile of Biofilm Resistance to Antimicrobial Compounds in the Plant-Pathogenic Bacterium Xylella fastidiosa Reveals Evidence of Persister Cells. Journal of Bacteriology, 2012, 194, 4561-4569.	1.0	53
35	Analysis of the biofilm proteome of Xylella fastidiosa. Proteome Science, 2011, 9, 58.	0.7	25
36	Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica. BMC Genomics, 2011, 12, 39.	1.2	50

#	Article	IF	CITATIONS
37	Expression of <i>Xylella fastidiosa</i> Fimbrial and Afimbrial Proteins during Biofilm Formation. Applied and Environmental Microbiology, 2010, 76, 4250-4259.	1.4	62
38	Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Applied Microbiology and Biotechnology, 2008, 77, 1145-1157.	1.7	52
39	Terpene production in the peel of sweet orange fruits. Genetics and Molecular Biology, 2007, 30, 841-847.	0.6	7
40	In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck) under water stress. Genetics and Molecular Biology, 2007, 30, 906-916.	0.6	20
41	Signaling pathways in a Citrus EST database. Genetics and Molecular Biology, 2007, 30, 734-751.	0.6	2
42	A genetic framework for flowering-time pathways in Citrus spp Genetics and Molecular Biology, 2007, 30, 769-779.	0.6	16
43	Comparative analysis of differentially expressed sequence tags of sweet orange and mandarin infected with Xylella fastidiosa. Genetics and Molecular Biology, 2007, 30, 965-971.	0.6	19
44	CitEST libraries. Genetics and Molecular Biology, 2007, 30, 1019-1023.	0.6	9
45	Bioinformatics for the Citrus EST Project (CitEST). Genetics and Molecular Biology, 2007, 30, 1024-1029.	0.6	7
46	Analysis of expressed sequence tags from Citrus sinensis L. Osbeck infected with Xylella fastidiosa. Genetics and Molecular Biology, 2007, 30, 957-964.	0.6	11
47	Differential expression of genes identified from Poncirus trifoliata tissue inoculated with CTV through EST analysis and in silico hybridization. Genetics and Molecular Biology, 2007, 30, 972-979.	0.6	19
48	Towards the identification of flower-specific genes in Citrus spp. Genetics and Molecular Biology, 2007, 30, 761-768.	0.6	4
49	Analysis of resistance toXylella fastidiosawithin a hybrid population of Pera sweet orange × Murcott tangor. Plant Pathology, 2007, 56, 661-668.	1.2	29
50	Primers based on the rpf gene region provide improved detection of Xanthomonas axonopodis pv. citri in naturally and artificially infected citrus plants. Journal of Applied Microbiology, 2006, 100, 279-285.	1.4	50
51	Complete nucleotide sequence, genomic organization and phylogenetic analysis of Citrus leprosis virus cytoplasmic type. Journal of General Virology, 2006, 87, 2721-2729.	1.3	127
52	Expression of Pathogenicity-Related Genes of Xylella fastidiosa In Vitro and In Planta. Current Microbiology, 2005, 50, 223-228.	1.0	43
53	Analysis of 16S rDNA Sequences from Citrus Huanglongbing Bacteria Reveal a Different "Ca. Liberibacter―Strain Associated with Citrus Disease in Sño Paulo. Plant Disease, 2005, 89, 848-852.	0.7	62
54	The Genome Sequence of the Gram-Positive Sugarcane Pathogen Leifsonia xyli subsp. xyli. Molecular Plant-Microbe Interactions, 2004, 17, 827-836.	1.4	119

#	Article	IF	CITATIONS
55	Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiology Letters, 2004, 237, 341-353.	0.7	75
56	Identification and analysis of single nucleotide polymorphisms (SNPs) in citrus. Euphytica, 2004, 138, 227-237.	0.6	32
57	Gene expression profile of the plant pathogen during biofilm formation in vitro. FEMS Microbiology Letters, 2004, 237, 341-353.	0.7	36
58	First Report of the Causal Agent of Huanglongbing ("Candidatus Liberibacter asiaticusâ€) in Brazil. Plant Disease, 2004, 88, 1382-1382.	0.7	196
59	Development of a Molecular Tool for the Diagnosis of Leprosis, a Major Threat to Citrus Production in the Americas. Plant Disease, 2003, 87, 1317-1321.	0.7	87
60	Comparative Analyses of the Complete Genome Sequences of Pierce's Disease and Citrus Variegated Chlorosis Strains of Xylella fastidiosa. Journal of Bacteriology, 2003, 185, 1018-1026.	1.0	307
61	Analysis of Gene Expression in Two Growth States of Xylella fastidiosa and Its Relationship with Pathogenicity. Molecular Plant-Microbe Interactions, 2003, 16, 867-875.	1.4	69
62	Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417, 459-463.	13.7	1,074
63	Differentiation of Strains of Xylella fastidiosa by a Variable Number of Tandem Repeat Analysis. Applied and Environmental Microbiology, 2001, 67, 4091-4095.	1.4	97
64	Absence of cell wall chitin inSaccharomyces cerevisiae leads to resistance toKluyveromyces lactis killer toxin. Yeast, 1993, 9, 589-598.	0.8	46
65	Alveolar soft-part sarcoma of the tongue. Report of a case. International Journal of Oral and Maxillofacial Surgery, 1990, 19, 110-112.	0.7	20
66	Focal myositis of the tongue: report of a case. The Journal of Osaka University Dental School, 1985, 25, 161-9.	0.1	1