Patricia M Di Lorenzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9065019/publications.pdf

Version: 2024-02-01

44 papers

1,301 citations

304743 22 h-index 35 g-index

49 all docs

49 docs citations

49 times ranked 815 citing authors

#	Article	IF	CITATIONS
1	Taste Response Variability and Temporal Coding in the Nucleus of the Solitary Tract of the Rat. Journal of Neurophysiology, 2003, 90, 1418-1431.	1.8	135
2	Neural and behavioral responsivity to ethyl alcohol as a tastant. Alcohol, 1986, 3, 55-61.	1.7	102
3	Quality Time: Representation of a Multidimensional Sensory Domain through Temporal Coding. Journal of Neuroscience, 2009, 29, 9227-9238.	3.6	62
4	Recognizing Taste: Coding Patterns Along the Neural Axis in Mammals. Chemical Senses, 2019, 44, 237-247.	2.0	58
5	Taste Coding in the Nucleus of the Solitary Tract of the Awake, Freely Licking Rat. Journal of Neuroscience, 2012, 32, 10494-10506.	3.6	56
6	Variability in Responses and Temporal Coding of Tastants of Similar Quality in the Nucleus of the Solitary Tract of the Rat. Journal of Neurophysiology, 2008, 99, 644-655.	1.8	55
7	Temporal coding in the gustatory system. Neuroscience and Biobehavioral Reviews, 2006, 30, 1145-1160.	6.1	52
8	Corticofugal influence on taste responses in the parabrachial pons of the rat. Brain Research, 1990, 530, 73-84.	2.2	50
9	Taste responses in the parabrachial pons of male, female and pregnant rats. Brain Research Bulletin, 1989, 23, 219-227.	3.0	49
10	Water as an Independent Taste Modality. Frontiers in Neuroscience, 2010, 4, 175.	2.8	44
11	Odor-Taste Convergence in the Nucleus of the Solitary Tract of the Awake Freely Licking Rat. Journal of Neuroscience, 2015, 35, 6284-6297.	3.6	44
12	The neural code for taste in the brain stem. Physiology and Behavior, 2000, 69, 87-96.	2.1	40
13	Perceptual consequences of electrical stimulation in the gustatory system Behavioral Neuroscience, 1993, 107, 130-138.	1.2	38
14	Transfer of information about taste from the nucleus of the solitary tract to the parabrachial nucleus of the pons. Brain Research, 1997, 763, 167-181.	2.2	36
15	Olfactory responses in the gustatory area of the parabrachial pons. Brain Research Bulletin, 1985, 15, 673-676.	3.0	33
16	The neural code for taste in the nucleus of the solitary tract of the rat: effects of adaptation. Brain Research, 2000, 852, 383-397.	2.2	33
17	Temporal Coding of Sensation: Mimicking Taste Quality With Electrical Stimulation of the Brain Behavioral Neuroscience, 2003, 117, 1423-1433.	1.2	33
18	Temporal coding of taste in the parabrachial nucleus of the pons of the rat. Journal of Neurophysiology, 2011, 105, 1889-1896.	1.8	32

#	Article	lF	CITATIONS
19	Dynamic Coding of Taste Stimuli in the Brainstem: Effects of Brief Pulses of Taste Stimuli on Subsequent Taste Responses. Journal of Neuroscience, 2003, 23, 8893-8902.	3 . 6	28
20	Taste and odor preferences following Roux-en-Y surgery in humans. PLoS ONE, 2018, 13, e0199508.	2.5	27
21	Temporal Coding of Intensity of NaCl and HCl in the Nucleus of the Solitary Tract of the Rat. Journal of Neurophysiology, 2011, 105, 697-711.	1.8	26
22	Taste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract. Journal of Neurophysiology, 2014, 111, 1655-1670.	1.8	26
23	Consumption of a high energy density diet triggers microbiota dysbiosis, hepatic lipidosis, and microglia activation in the nucleus of the solitary tract in rats. Nutrition and Diabetes, 2020, 10, 20.	3.2	24
24	Taste Responses in the Nucleus of the Solitary Tract of Awake Obese Rats Are Blunted Compared With Those in Lean Rats. Frontiers in Integrative Neuroscience, 2019, 13, 35.	2.1	22
25	Neural Coding Mechanisms for Flow Rate in Taste-Responsive Cells in the Nucleus of the Solitary Tract of the Rat. Journal of Neurophysiology, 2007, 97, 1857-1861.	1.8	21
26	Responses to Binary Taste Mixtures in the Nucleus of the Solitary Tract: Neural Coding With Firing Rate. Journal of Neurophysiology, 2008, 99, 2144-2157.	1.8	20
27	Making time count: Functional evidence for temporal coding of taste sensation Behavioral Neuroscience, 2009, 123, 14-25.	1.2	19
28	Taste coding of complex naturalistic taste stimuli and traditional taste stimuli in the parabrachial pons of the awake, freely licking rat. Journal of Neurophysiology, 2016, 116, 171-182.	1.8	19
29	Not so fast: taste stimulus coding time in the rat revisited. Frontiers in Integrative Neuroscience, 2012, 6, 27.	2.1	18
30	Information Processing in the Parabrachial Nucleus of the Pons. Annals of the New York Academy of Sciences, 2009, 1170, 365-371.	3.8	16
31	Heterogeneity of neuronal responses in the nucleus of the solitary tract suggests sensorimotor integration in the neural code for taste. Journal of Neurophysiology, 2019, 121, 634-645.	1.8	14
32	Two types of inhibitory influences target different groups of taste-responsive cells in the nucleus of the solitary tract of the rat. Brain Research, 2009, 1275, 24-32.	2.2	10
33	Neural coding of taste by simultaneously recorded cells in the nucleus of the solitary tract of the rat. Journal of Neurophysiology, 2012, 108, 3301-3312.	1.8	9
34	Taste-Specific Cell Assemblies in a Biologically Informed Model of the Nucleus of the Solitary Tract. Journal of Neurophysiology, 2010, 104, 4-17.	1.8	8
35	Spontaneous Changes in Taste Sensitivity of Single Units Recorded over Consecutive Days in the Brainstem of the Awake Rat. PLoS ONE, 2016, 11, e0160143.	2.5	8
36	Sprague Dawley Rats Gaining Weight on a High Energy Diet Exhibit Damage to Taste Tissue Even after Return to a Healthy Diet. Nutrients, 2021, 13, 3062.	4.1	7

#	Article	IF	CITATIONS
37	Neural Coding of Food Is a Multisensory, Sensorimotor Function. Nutrients, 2021, 13, 398.	4.1	6
38	Taste in the brain is encoded by sensorimotor state changes. Current Opinion in Physiology, 2021, 20, 39-45.	1.8	5
39	Enhancing GABAergic Tone in the Rostral Nucleus of the Solitary Tract Reconfigures Sensorimotor Neural Activity. Journal of Neuroscience, 2021, 41, 489-501.	3.6	3
40	Roux‑en‑Y gastric bypass surgery triggers rapid DNA fragmentation in vagal afferent neurons in rats. Acta Neurobiologiae Experimentalis, 2019, 79, 432-444.	0.7	2
41	Stimulation of sodium channels in taste-receptor cells provides noise that enhances taste detection. Neurocomputing, 2000, 32-33, 121-126.	5.9	1
42	Information Processing in the Gustatory System. , 2014, , 783-796.		1
43	Basic tastes as cognitive concepts and taste coding as more than spatial. Behavioral and Brain Sciences, 2008, 31, 78-79.	0.7	0
44	Taste: A Scattered Affair. Current Biology, 2021, 31, R74-R76.	3.9	0