James Stephen Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9064979/publications.pdf

Version: 2024-02-01

		109321	1	38484
89	3,852	35		58
papers	citations	h-index		g-index
115	115	115		1837
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Synthesis of the Prototypical Cyclopropyl Dipeptide Mimic and Evaluation of Its Turn-Inducing Capability. Journal of Organic Chemistry, 2022, 87, 258-270.	3.2	O
2	Convergent Synthesis of the C1–C29 Framework of Amphidinolide F. Journal of Organic Chemistry, 2022, 87, 8126-8141.	3.2	3
3	Total Syntheses of 11â€Acetoxyâ€4â€deoxyasbestininâ€D, 4â€Deoxyasbestininâ€C, Asbestininâ€10, â€20, â€ Chemistry - A European Journal, 2020, 26, 1155-1160.	€21 and â	l€ 2 3.
4	Stereoselective Synthesis of the l–L Fragment of the Pacific Ciguatoxins. Toxins, 2020, 12, 740.	3.4	3
5	Î ² -Turn Mimics by Chemical Ligation. Organic Letters, 2020, 22, 4424-4428.	4.6	7
6	Bidirectional Synthesis of the IJK Fragment of Ciguatoxin CTX3C by Sequential Double Ring-Closing Metathesis and Tsuji–Trost Allylation. Organic Letters, 2020, 22, 3734-3738.	4.6	10
7	Synthesis of the Core Framework of the Cornexistins by Intramolecular Nozaki-Hiyama-Kishi Coupling. Molecules, 2019, 24, 2654.	3.8	7
8	Multiâ€Gram Scale Synthesis of Chiral 3â€Methylâ€2,5â€ <i>trans</i> àê€etrahydrofurans. Helvetica Chimica Acta, 2019, 102, e1900131.	1.6	1
9	A Short Sequence for the Iterative Synthesis of Fused Polyethers. Helvetica Chimica Acta, 2019, 102, e1900161.	1.6	0
10	Stereoselective Synthesis of Medium-Sized Cyclic Ethers by Sequential Ring-Closing Metathesis and Tsuji–Trost Allylation. Organic Letters, 2018, 20, 2782-2786.	4.6	10
11	Synthesis of fused tricyclic systems by thermal Cope rearrangement of furan-substituted vinyl cyclopropanes. Organic and Biomolecular Chemistry, 2018, 16, 3970-3982.	2.8	4
12	Total Synthesis of 7â€∢i>epià€Pukalide and 7â€Acetylsinumaximolâ€B. Chemistry - A European Journal, 2017 23, 9761-9765.	7 _{3.3}	20
13	Thioether-Catalysed Tandem Synthesis of Furans and Cyclic Ethers or Lactones. Synlett, 2017, 28, 1358-1362.	1.8	3
14	Trialkylphosphine-Mediated Synthesis of 2-Acyl Furans from Ynenones. Organic Letters, 2017, 19, 3556-3559.	4.6	27
15	Total Synthesis of (â^')â€Nakadomarinâ€A. Angewandte Chemie, 2016, 128, 4404-4407.	2.0	14
16	Total Synthesis of (â^')â€Nakadomarinâ€A. Angewandte Chemie - International Edition, 2016, 55, 4332-4335.	13.8	56
17	Synthesis of Four Diastereomers of Sclerophytinâ€F and Structural Reassignment of Several Sclerophytin Natural Products. Chemistry - A European Journal, 2015, 21, 4772-4780.	3.3	9
18	Synthesis of Cyclopropyl‧ubstituted Furans by Brønsted Acid Promoted Cascade Reactions. Angewandte Chemie - International Edition, 2015, 54, 5744-5747.	13.8	41

#	Article	IF	CITATIONS
19	Synthesis of the A–D Ring System of the Gambieric Acids. Organic Letters, 2015, 17, 4694-4697.	4.6	19
20	Intramolecular Reactions of Metal Carbenoids with Allylic Ethers: Is a Free Ylide Involved in Every Case?. Chemistry - A European Journal, 2014, 20, 5454-5459.	3.3	19
21	Total Synthesis of the Purported Structure of Sclerophytin F. Organic Letters, 2014, 16, 4300-4303.	4.6	9
22	Total Syntheses of Amphidinolidesâ€T1, T3, and T4. Angewandte Chemie - International Edition, 2013, 52, 10072-10075.	13.8	22
23	Total Syntheses of Multiple Cladiellin Natural Products by Use of a Completely General Strategy. Journal of Organic Chemistry, 2013, 78, 673-696.	3.2	33
24	Synthesis of the C-1–C-17 Fragment of Amphidinolides C, C2, C3, and F. Organic Letters, 2013, 15, 1460-1463.	4.6	25
25	Synthesis of the C-18–C-34 Fragment of Amphidinolides C, C2, and C3. Organic Letters, 2013, 15, 1464-1467.	4.6	24
26	Organocatalytic Synthesis of Highly Substituted Furfuryl Alcohols and Amines. Angewandte Chemie - International Edition, 2012, 51, 12128-12131.	13.8	56
27	Concise synthesis of the C-1–C-12 fragment of amphidinolides T1–T5. Organic and Biomolecular Chemistry, 2011, 9, 4823.	2.8	19
28	Synthesis of the Tricyclic Core of Labiatin A and Australin A. Organic Letters, 2011, 13, 3980-3983.	4.6	28
29	Enantioselective Total Syntheses of Three Cladiellins (Eunicellins): A General Approach to the Entire Family of Natural Products. Angewandte Chemie - International Edition, 2010, 49, 9867-9870.	13.8	46
30	Stereoselective Construction of the Tricyclic Core of Neoliacinic Acid. Journal of Organic Chemistry, 2008, 73, 1040-1055.	3.2	30
31	Synthetic studies on the cornexistins: synthesis of $(\hat{A}\pm)$ -5-epi-hydroxycornexistin. Organic and Biomolecular Chemistry, 2008, 6, 4012.	2.8	22
32	Rapid synthesis of medium-ring fused polycarbocyclic systems by rearrangement of carbenoid-derived oxonium ylides. Chemical Communications, 2007, , 4134.	4.1	17
33	Synthesis of the Fused Polyether Core of Hemibrevetoxin B by Two-Directional Ring-Closing Metathesis. Organic Letters, 2007, 9, 1033-1036.	4.6	27
34	Rapid Synthesis of the Aâ^'E Fragment of Ciguatoxin CTX3C. Organic Letters, 2007, 9, 2091-2094.	4.6	41
35	A Concise Total Synthesis of (\hat{A}_{\pm}) -Vigulariol. Angewandte Chemie - International Edition, 2007, 46, 437-440.	13.8	65
36	Synthesis of a lactone natural product found in Greek tobacco. Tetrahedron Letters, 2007, 48, 2501-2503.	1.4	12

#	Article	IF	Citations
37	Construction of fused polycyclic ethers by strategies involving ring-closing metathesis. Chemical Communications, 2006, , 3571.	4.1	73
38	A concise enantioselective synthesis of the fungal metabolite (+)-decarestrictine L. Tetrahedron, 2006, 62, 73-78.	1.9	47
39	Construction of Fused Medium-Ring Carbocycles by Catalytic Generation and Rearrangement of Oxonium Ylides. European Journal of Organic Chemistry, 2006, 2006, 323-327.	2.4	23
40	Synthetic Studies on the Cladiellins (Eunicellins): Unexpected Selenoxide ÂÐisplacement with Concomitant Alcohol Oxidation During Attempted ÂSelenoxide Elimination. Synlett, 2006, 2006, 2191-2194.	1.8	6
41	Rapid Two-Directional Synthesis of the F-J Fragment of the Gambieric Acids by Iterative Double Ring-Closing Metathesis. Angewandte Chemie - International Edition, 2005, 44, 6157-6162.	13.8	72
42	Construction of Building-Blocks for Polyether Synthesis Using Sequential Catalytic Ring-Closing Enyne and Cross Metathesis ChemInform, 2005, 36, no.	0.0	0
43	Investigation of the Biomimetic Synthesis of Emindole SB Using a Fluorinated Polyene Cyclisation Precursor. Synlett, 2005, 2005, 697-699.	1.8	18
44	Synthesis of the Tricyclic Core of the Marine Natural Product Labiatin A. Synthesis, 2005, 2005, 3398-3404.	2.3	14
45	Tuneable asymmetric copper-catalysed allylic amination and oxidation reactions. Chemical Communications, 2005, , 5175.	4.1	61
46	Stereoselective synthesis of the cyclic ether core of (+)-laurenyne. Tetrahedron Letters, 2004, 45, 8639-8642.	1.4	26
47	Asymmetric allylic oxidation of bridged-bicyclic alkenes using a copper-catalysed symmetrising–desymmetrising Kharasch–Sosnovsky reaction. Tetrahedron Letters, 2004, 45, 9447-9450.	1.4	26
48	Construction of building-blocks for polyether synthesis using sequential catalytic ring-closing enyne and cross metathesis. Chemical Communications, 2004, , 2470.	4.1	27
49	Anomalous Intramolecular Câ^'H Insertion Reactions of Rhodium Carbenoids:  Factors Influencing the Reaction Course and Mechanistic Implications. Journal of Organic Chemistry, 2004, 69, 3886-3898.	3.2	35
50	A Concise and Stereoselective Synthesis of the A-Ring Fragment of the Gambieric Acids. Organic Letters, 2004, 6, 1773-1776.	4.6	67
51	Direct peptide coupling of novel amino acid derivatives produced by rearrangement of catalytically generated ammonium ylides. Tetrahedron Letters, 2003, 44, 7031-7034.	1.4	10
52	Synthesis of the Carbocyclic Core of the Cornexistins by Ring-Closing Metathesis. Organic Letters, 2003, 5, 89-92.	4.6	54
53	Exploration of the biomimetic synthesis of indole-diterpene mycotoxins: an unexpected cascade reaction during the attempted synthesis of emindole SB. Chemical Communications, 2003, , 1546.	4.1	22
54	Stereoselective synthesis of tetrahydropyran-3-ones by rearrangement of oxonium ylides generated from metal carbenoids. Chemical Communications, 2003, , 2578.	4.1	33

#	Article	IF	CITATIONS
55	Exploration of the biomimetic synthesis of indole-diterpene mycotoxins: an unexpected cascade reaction during the attempted synthesis of emindole SB. Chemical Communications, 2003, , 1546-7.	4.1	2
56	Synthesis of Novel \hat{l} ±-Substituted and \hat{l} ±, \hat{l} ±-Disubstituted Amino Acids by Rearrangement of Ammonium Ylides Generated from Metal Carbenoids. Organic Letters, 2002, 4, 765-768.	4.6	47
57	Preparation of cyclic ethers for polyether synthesis by catalytic ring-closing enyne metathesis of alkynyl ethers. Tetrahedron, 2002, 58, 1973-1982.	1.9	48
58	Rearrangement of ammonium ylides produced by intramolecular reaction of catalytically generated metal carbenoids. Part 1. Synthesis of cyclic amines. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3312-3324.	1.3	6
59	A novel approach to the construction of medium-ring carbocycles utilising the rearrangement of oxonium ylides generated from metal carbenoids. Chemical Communications, 2001, , 459-460.	4.1	24
60	Rearrangement of ammonium ylides produced by intramolecular reaction of catalytically generated metal carbenoids. Part 2. Stereoselective synthesis of bicyclic amines. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3325-3337.	1.3	8
61	Diels–Alder adducts of medium-ring carbocyclic dienes prepared by rearrangement of catalytically generated cyclic oxonium ylides. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 1326-1329.	0.4	1
62	A concise enantioselective synthesis of the AB ring system of the manzamine alkaloids by ring-closing enyne metathesis. Tetrahedron Letters, 2001, 42, 3235-3238.	1.4	31
63	Probing the mechanism of the anomalous intramolecular C–H insertion reaction of rhodium carbenoids by analysis of kinetic isotope effects. Tetrahedron Letters, 2001, 42, 6187-6190.	1.4	28
64	Synthesis of Polycyclic Ethers by Two-Directional Double Ring-Closing Metathesis. Angewandte Chemie - International Edition, 2000, 39, 372-374.	13.8	99
65	Construction of the 11-oxabicyclo [6.2.1] undecane core of the cladiellins by a novel rearrangement reaction. Chemical Communications, 2000, , 1079-1080.	4.1	25
66	Synthesis of sub-units of marine polycyclic ethers by ring-closing metathesis and hydroboration of enol ethers. Tetrahedron, 1999, 55, 8231-8248.	1.9	72
67	Synthesis of the functionalised core of neoliacinic acid. Chemical Communications, 1999, , 749-750.	4.1	30
68	Synthesis of medium-sized cyclic allylic ethers by ring-closing metathesis and subsequent elaboration to sub-units found in the brevetoxins and ciguatoxins. Tetrahedron Letters, 1998, 39, 8321-8324.	1.4	43
69	Asymmetric Synthesis of Cyclic Ethers by Rearrangement of Oxonium Ylides Generated from Chiral Copper Carbenoids. Tetrahedron Letters, 1998, 39, 97-100.	1.4	91
70	Enantioselective propargylic oxidation. Tetrahedron Letters, 1998, 39, 4913-4916.	1.4	25
71	Synthesis of alkenyl-substituted cyclic enol ethers by catalytic ring-closing metathesis of alkynyl ethers. Chemical Communications, 1998, , 2629-2630.	4.1	46
72	Enantioselective allylic acyloxylation catalysed by copper–oxazoline †complexes. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1167-1170.	0.9	46

#	Article	IF	Citations
73	Anomalous Products from Intramolecular Insertion Reactions of Rhodium Carbenoids into the α-Câ^'H Bonds of Ethers. Journal of Organic Chemistry, 1997, 62, 4910-4911.	3.2	33
74	Synthesis of Medium Ring Ethers. 5. The Synthesis of (+)-Laurencin. Journal of the American Chemical Society, 1997, 119, 7483-7498.	13.7	134
75	Synthesis of brevetoxin sub-units by sequential ring-closing metathesis and hydroboration. Tetrahedron Letters, 1997, 38, 123-126.	1.4	131
76	Enantioselective synthesis of medium-ring sub-units of brevetoxin A by ring-closing metathesis. Tetrahedron Letters, 1997, 38, 127-130.	1.4	126
77	Stereoselective synthesis of the bicyclic core structure of the highly oxidised sesquiterpene neoliacinic acid. Tetrahedron Letters, 1996, 37, 5605-5608.	1.4	41
78	An enantioselective synthesis of the CE ring system of the alkaloids manzamine A, E and F, and ircinal a. Tetrahedron Letters, 1995, 36, 2519-2522.	1.4	73
79	A short synthesis of (±)-decarestrictine L. Tetrahedron Letters, 1994, 35, 6381-6382.	1.4	49
80	Intramolecular generation and rearrangement of ammonium ylides from copper carbenoids: a general method for the synthesis of cyclic amines. Journal of the Chemical Society Chemical Communications, 1994, , 2701.	2.0	43
81	Synthesis of cyclic ethers from copper carbenoids by formation and rearrangement of oxonium ylides. Tetrahedron Letters, 1993, 34, 4385-4388.	1.4	89
82	Synthesis of (+)-laurencin. Journal of the American Chemical Society, 1993, 115, 10400-10401.	13.7	49
83	Synthesis of medium ring ethers. Part 3. Disproof of the proposed 2,8-disubstituted oxocane structure for gloeosporone. Synthesis of pseudo-gloeosporone. Journal of the Chemical Society Perkin Transactions 1, 1992, , 95.	0.9	19
84	Synthesis of medium ring ethers. Part 2. Synthesis of the fully saturated carbon skeleton of Laurencia non-terpenoid ether metabolites containing seven-, eight- and nine-membered rings. Journal of the Chemical Society Perkin Transactions $1,1992,83.$	0.9	51
85	Diastereoselective Anti Aldol Reactions of Chiral Ethyl Ketones. Enantioselective Processes for the Synthesis of Polypropionate Natural Products Tetrahedron, 1992, 48, 2127-2142.	1.9	177
86	Diastereoselective synthesis of 2,5-dialkyl tetrahydrofuran-3-ones by a copper-catalysed tandem carbenoid insertion and ylide rearrangement reaction. Tetrahedron Letters, 1992, 33, 6193-6196.	1.4	84
87	Diastereoselective aldol reactions using .betaketo imide derived enolates. A versatile approach to the assemblage of polypropionate systems. Journal of the American Chemical Society, 1990, 112, 866-868.	13.7	250
88	New procedure for the direct generation of titanium enolates. Diastereoselective bond constructions with representative electrophiles. Journal of the American Chemical Society, 1990, 112, 8215-8216.	13.7	338
89	A strategy for the asymmetric synthesis of medium ring oxygen heterocycles: Enantioselective total synthesis of (+)-octahydrodeacetyldebromolaurencin. Tetrahedron Letters, 1988, 29, 4333-4336.	1.4	58