Khoi T Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9064486/publications.pdf

Version: 2024-02-01

37 papers	1,511 citations	19 h-index	3	37 g-index
37 all docs	37 docs citations	37 times ranked		1742 citing authors

#	Article	IF	Citations
1	Design of a Highly Sensitive and Specific Nucleotide Sensor Based on Photon Upconverting Particles. Journal of the American Chemical Society, 2006, 128, 12410-12411.	13.7	235
2	Orientation Determination of Protein Helical Secondary Structures Using Linear and Nonlinear Vibrational Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 12169-12180.	2.6	153
3	Orientation Determination of Interfacial \hat{l}^2 -Sheet Structures in Situ. Journal of Physical Chemistry B, 2010, 114, 8291-8300.	2.6	144
4	Molecular Interactions between Magainin 2 and Model Membranes in Situ. Journal of Physical Chemistry B, 2009, 113, 12358-12363.	2.6	105
5	In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy. Journal of Structural Biology, 2009, 168, 61-77.	2.8	102
6	Fano Lineshape and Phonon Softening in Single Isolated Metallic Carbon Nanotubes. Physical Review Letters, 2007, 98, 145504.	7.8	97
7	Interactions of Alamethicin with Model Cell Membranes Investigated Using Sum Frequency Generation Vibrational Spectroscopy in Real Time in Situ. Journal of Physical Chemistry B, 2010, 114, 3334-3340.	2.6	82
8	Orientation Difference of Chemically Immobilized and Physically Adsorbed Biological Molecules on Polymers Detected at the Solid/Liquid Interfaces in Situ. Langmuir, 2010, 26, 6471-6477.	3.5	69
9	Probing the Spontaneous Membrane Insertion of a Tail-Anchored Membrane Protein by Sum Frequency Generation Spectroscopy. Journal of the American Chemical Society, 2010, 132, 15112-15115.	13.7	57
10	Physiologically-Relevant Modes of Membrane Interactions by the Human Antimicrobial Peptide, LL-37, Revealed by SFG Experiments. Scientific Reports, 2013, 3, 1854.	3.3	51
11	Unexpected inhibition of CO2 gas hydrate formation in dilute TBAB solutions and the critical role of interfacial water structure. Fuel, 2016, 185, 517-523.	6.4	48
12	Temperature and Gate Voltage Dependent Raman Spectra of Single-Layer Graphene. ACS Nano, 2011, 5, 5273-5279.	14.6	39
13	Interfacial Water Structure at Surfactant Concentrations below and above the Critical Micelle Concentration as Revealed by Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 15477-15481.	3.1	34
14	Strong Cooperative Effect of Oppositely Charged Surfactant Mixtures on Their Adsorption and Packing at the Air–Water Interface and Interfacial Water Structure. Langmuir, 2014, 30, 7047-7051.	3.5	27
15	A sum-frequency generation spectroscopic study of the Gibbs analysis paradox: monolayer or sub-monolayer adsorption?. Physical Chemistry Chemical Physics, 2016, 18, 8794-8805.	2.8	27
16	Investigation of sub-monolayer, monolayer, and multilayer self-assembled semifluorinated alkylsilane films. Journal of Colloid and Interface Science, 2011, 353, 322-330.	9.4	26
17	In situ investigation of halide co-ion effects on SDS adsorption at air–water interfaces. Soft Matter, 2014, 10, 6556-6563.	2.7	24
18	Raman Spectral Evolution in Individual Metallic Single-Walled Carbon Nanotubes upon Covalent Sidewall Functionalizationâ€. Journal of Physical Chemistry C, 2007, 111, 17755-17760.	3.1	23

#	Article	IF	CITATIONS
19	Interactions between halide anions and interfacial water molecules in relation to the Jones–Ray effect. Physical Chemistry Chemical Physics, 2014, 16, 24661-24665.	2.8	20
20	Spectral Diversity in Raman G-band Modes of Metallic Carbon Nanotubes within a Single Chirality. Journal of Physical Chemistry C, 2008, 112, 13017-13023.	3.1	18
21	Sum Frequency Generation Studies on Bioadhesion: Elucidating the Molecular Structure of Proteins at Interfaces. Journal of Adhesion, 2009, 85, 484-511.	3.0	18
22	Role of Covalent Defects on Phonon Softening in Metallic Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 7103-7106.	13.7	15
23	Interfacial Orientation and Secondary Structure Change in Tachyplesin I: Molecular Dynamics and Sum Frequency Generation Spectroscopy Studies. Langmuir, 2011, 27, 14343-14351.	3.5	14
24	Effects of Ultrafine Bubbles on Gram-Negative Bacteria: Inhibition or Selection?. Langmuir, 2019, 35, 13761-13768.	3.5	14
25	An electronically enhanced chiral sum frequency generation vibrational spectroscopy study of lipid-bound cytochrome c. Chemical Communications, 2015, 51, 195-197.	4.1	13
26	Combined Sum Frequency Generation and Thin Liquid Film Study of the Specific Effect of Monovalent Cations on the Interfacial Water Structure. Langmuir, 2018, 34, 6844-6855.	3.5	11
27	Influence of defects and doping on optical phonon lifetime and Raman linewidth in carbon nanotubes. Physical Review B, $2011,83,\ldots$	3.2	8
28	New Evidence of Head-to-Tail Complex Formation of SDS–DOH Mixtures Adsorbed at the Air–Water Interface as Revealed by Vibrational Sum Frequency Generation Spectroscopy and Isotope Labelling. Langmuir, 2019, 35, 4825-4833.	3.5	8
29	Probing the Molecular Orientation of Methyl Isobutyl Carbinol at the Air–Water Interface. Journal of Surfactants and Detergents, 2017, 20, 969-976.	2.1	7
30	Suppressing interfacial water signals to assist the peak assignment of the N ⁺ –H stretching mode in sum frequency generation vibrational spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 28534-28538.	2.8	5
31	In Situ Investigation of Peptide–Lipid Interaction Between PAP248–286 and Model Cell Membranes. Journal of Membrane Biology, 2016, 249, 411-417.	2.1	4
32	Hydrophobizing cellulose surfaces via catalyzed transesterification reaction using soybean oil and starch. Heliyon, 2020, 6, e05559.	3.2	4
33	Utilizing polymer-conjugate albumin-based ultrafine gas bubbles in combination with ultra-high frequency radiations in drug transportation and delivery. RSC Advances, 2021, 11, 34440-34448.	3.6	4
34	Evidence of surfactant sub-monolayer adsorption at the air/water interface provided by laser scattering measurements of ultrafine gas bubbles. New Journal of Chemistry, 2021, 45, 14149-14157.	2.8	2
35	Orientation determination of interfacial bent α-helical structures using Sum Frequency Generation vibrational spectroscopy. Chemical Physics, 2015, 447, 15-21.	1.9	1
36	Improving the quality of Vernonia amygdalina extract by ultrasoundâ€assisted extraction coupled with gas bubble flotation. Journal of Food Process Engineering, 2019, 42, e13284.	2.9	1

3

#	Article	IF	CITATIONS
37	Utilization of Ultrafine Gas Bubbles to Investigate the Jones–Ray Effect of Diluted Salt Solutions. Langmuir, 2021, 37, 14237-14242.	3.5	1