
Fumiko Hoeft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9063929/publications.pdf Version: 2024-02-01

FUMIRO HOFET

#	Article	IF	CITATIONS
1	Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 361-366.	3.3	404
2	Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the United States of America, 2007, 104, 4234-4239.	3.3	342
3	More Is Not Always Better: Increased Fractional Anisotropy of Superior Longitudinal Fasciculus Associated with Poor Visuospatial Abilities in Williams Syndrome. Journal of Neuroscience, 2007, 27, 11960-11965.	1.7	258
4	Neural Basis of Dyslexia: A Comparison between Dyslexic and Nondyslexic Children Equated for Reading Ability. Journal of Neuroscience, 2006, 26, 10700-10708.	1.7	202
5	Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15510-15515.	3.3	197
6	Gender differences in the mesocorticolimbic system during computer game-play. Journal of Psychiatric Research, 2008, 42, 253-258.	1.5	193
7	The Brain Basis of the Phonological Deficit in Dyslexia Is Independent of IQ. Psychological Science, 2011, 22, 1442-1451.	1.8	140
8	Prediction of children's reading skills using behavioral, functional, and structural neuroimaging measures Behavioral Neuroscience, 2007, 121, 602-613.	0.6	119
9	Region-specific alterations in brain development in one- to three-year-old boys with fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9335-9339.	3.3	114
10	Functional Brain Basis of Hypnotizability. Archives of General Psychiatry, 2012, 69, 1064.	13.8	108
11	Recognizing Psychiatric Comorbidity With Reading Disorders. Frontiers in Psychiatry, 2018, 9, 101.	1.3	101
12	White Matter Morphometric Changes Uniquely Predict Children's Reading Acquisition. Psychological Science, 2014, 25, 1870-1883.	1.8	97
13	Neural Noise Hypothesis of Developmental Dyslexia. Trends in Cognitive Sciences, 2017, 21, 434-448.	4.0	96
14	Brain Activation during Sentence Comprehension among Good and Poor Readers. Cerebral Cortex, 2007, 17, 2780-2787.	1.6	91
15	Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. NeuroImage, 2013, 71, 260-274.	2.1	91
16	Neuroanatomical Differences in Toddler Boys With Fragile X Syndrome and Idiopathic Autism. Archives of General Psychiatry, 2011, 68, 295.	13.8	90
17	Integrating MRI brain imaging studies of pre-reading children with current theories of developmental dyslexia: a review and quantitative meta-analysis. Current Opinion in Behavioral Sciences, 2016, 10, 155-161.	2.0	87
18	Fronto-striatal dysfunction and potential compensatory mechanisms in male adolescents with fragile X syndrome. Human Brain Mapping, 2007, 28, 543-554.	1.9	85

FUMIKO HOEFT

#	Article	IF	CITATIONS
19	Morphometric Spatial Patterns Differentiating Boys With Fragile X Syndrome, Typically Developing Boys, and Developmentally Delayed Boys Aged 1 to 3 Years. Archives of General Psychiatry, 2008, 65, 1087.	13.8	79
20	Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia, 2014, 61, 235-246.	0.7	79
21	Socio-emotional and cognitive resilience in children with reading disabilities. Current Opinion in Behavioral Sciences, 2016, 10, 133-141.	2.0	78
22	Maternal history of reading difficulty is associated with reduced language-related gray matter in beginning readers. Neurolmage, 2012, 59, 3021-3032.	2.1	76
23	Glutamate and Choline Levels Predict Individual Differences in Reading Ability in Emergent Readers. Journal of Neuroscience, 2014, 34, 4082-4089.	1.7	73
24	The matter of motivation: Striatal resting-state connectivity is dissociable between grit and growth mindset. Social Cognitive and Affective Neuroscience, 2016, 11, 1521-1527.	1.5	73
25	Possible roles for fronto-striatal circuits in reading disorder. Neuroscience and Biobehavioral Reviews, 2017, 72, 243-260.	2.9	68
26	Print-Speech Convergence Predicts Future Reading Outcomes in Early Readers. Psychological Science, 2016, 27, 75-84.	1.8	64
27	Neuroanatomical anomalies of dyslexia: Disambiguating the effects of disorder, performance, and maturation. Neuropsychologia, 2016, 81, 68-78.	0.7	53
28	Neural correlates of language and non-language visuospatial processing in adolescents with reading disability. NeuroImage, 2014, 101, 653-666.	2.1	35
29	Anxiety and Attentional Bias in Children with Specific Learning Disorders. Journal of Abnormal Child Psychology, 2019, 47, 487-497.	3.5	32
30	Individual Differences in Reading Skill Are Related to Trial-by-Trial Neural Activation Variability in the Reading Network. Journal of Neuroscience, 2018, 38, 2981-2989.	1.7	31
31	Mapping Genetically Controlled Neural Circuits of Social Behavior and Visuo-Motor Integration by a Preliminary Examination of Atypical Deletions with Williams Syndrome. PLoS ONE, 2014, 9, e104088.	1.1	30
32	Neuroimaging correlates of handwriting quality as children learn to read and write. Frontiers in Human Neuroscience, 2014, 8, 155.	1.0	30
33	Female-Specific Intergenerational Transmission Patterns of the Human Corticolimbic Circuitry. Journal of Neuroscience, 2016, 36, 1254-1260.	1.7	30
34	Neurobiological bases of reading disorder Part I: Etiological investigations. Language and Linguistics Compass, 2017, 11, e12239.	1.3	30
35	Individual Differences in Adult Reading Are Associated with Left Temporo-parietal to Dorsal Striatal Functional Connectivity. Cerebral Cortex, 2016, 26, 4069-4081.	1.6	29
36	Electronically Switchable Sham Transcranial Magnetic Stimulation (TMS) System. PLoS ONE, 2008, 3, e1923.	1.1	29

FUMIKO HOEFT

#	Article	IF	CITATIONS
37	Structural brain differences in school-age children with residual speech sound errors. Brain and Language, 2014, 128, 25-33.	0.8	26
38	Spoken language proficiency predicts print-speech convergence in beginning readers. NeuroImage, 2019, 201, 116021.	2.1	26
39	Direct and indirect contributions of executive function to word decoding and reading comprehension in kindergarten. Learning and Individual Differences, 2019, 76, 101783.	1.5	25
40	Abnormal age-related cortical folding and neurite morphology in children with developmental dyslexia. NeuroImage: Clinical, 2018, 18, 814-821.	1.4	24
41	Comprehending expository texts: the dynamic neurobiological correlates of building a coherent text representation. Frontiers in Human Neuroscience, 2013, 7, 853.	1.0	23
42	Shared temporoparietal dysfunction in dyslexia and typical readers with discrepantly high IQ. Trends in Neuroscience and Education, 2016, 5, 173-177.	1.5	22
43	Brain basis of cognitive resilience: Prefrontal cortex predicts better reading comprehension in relation to decoding. PLoS ONE, 2018, 13, e0198791.	1.1	22
44	Anomalous gray matter patterns in specific reading comprehension deficit are independent of dyslexia. Annals of Dyslexia, 2016, 66, 256-274.	1.2	20
45	Impact of mentoring on socioâ€emotional and mental health outcomes of youth with learning disabilities and attentionâ€deficit hyperactivity disorder. Child and Adolescent Mental Health, 2019, 24, 318-328.	1.8	20
46	Neural correlates of oral word reading, silent reading comprehension, and cognitive subcomponents. International Journal of Behavioral Development, 2018, 42, 342-356.	1.3	19
47	Intergenerational Neuroimaging of Human Brain Circuitry. Trends in Neurosciences, 2016, 39, 644-648.	4.2	16
48	Neurobiological bases of reading disorder part II: The importance of developmental considerations in typical and atypical reading. Language and Linguistics Compass, 2017, 11, e12252.	1.3	16
49	Enhanced visceromotor emotional reactivity in dyslexia and its relation to salience network connectivity. Cortex, 2021, 134, 278-295.	1.1	12
50	Decoding the role of the cerebellum in the early stages of reading acquisition. Cortex, 2021, 141, 262-279.	1.1	8
51	A case of Bilateral Perisylvian Syndrome with reading disability. Cortex, 2016, 76, 121-124.	1.1	7
52	Attentional Fluctuations, Cognitive Flexibility, and Bilingualism in Kindergarteners. Behavioral Sciences (Basel, Switzerland), 2019, 9, 58.	1.0	7
53	The role of grit and resilience in children with reading disorder: a longitudinal cohort study. Annals of Dyslexia, 2022, 72, 1-27.	1.2	6
54	A Systematic Review of the Consequences of Stigma and Stereotype Threat for Individuals With Specific Learning Disabilities. Journal of Learning Disabilities, 2023, 56, 193-209.	1.5	6

FUMIKO HOEFT

#	Article	IF	CITATIONS
55	Hair cortisol and dehydroepiandrosterone concentrations: Associations with executive function in early childhood. Biological Psychology, 2020, 155, 107946.	1.1	5
56	Functional and morphological correlates of developmental dyslexia: A multimodal investigation of the ventral occipitotemporal cortex. Journal of Neuroimaging, 2021, 31, 962-972.	1.0	5
57	Development of thalamus mediates paternal age effect on offspring reading: A preliminary investigation. Human Brain Mapping, 2021, 42, 4580-4596.	1.9	3
58	Neurofunctional basis underlying audiovisual integration of print and speech sound in Chinese children. European Journal of Neuroscience, 2022, 55, 806-826.	1.2	3
59	Atypical Relationships Between Neurofunctional Features of Print-Sound Integration and Reading Abilities in Chinese Children With Dyslexia. Frontiers in Psychology, 2021, 12, 748644.	1.1	2
60	Intergenerational Transmission in Developmental Dyslexia. , 2019, , 413-438.		1
61	Maternal cerebellar gray matter volume is associated with daughters' psychotic experience. Psychiatry and Clinical Neurosciences, 2020, 74, 392-397.	1.0	1