Per Trolle JÃ, rgensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9063772/publications.pdf

Version: 2024-02-01

32 papers 429 citations

758635 12 h-index 752256 20 g-index

32 all docs 32 docs citations

times ranked

32

511 citing authors

#	Article	IF	CITATIONS
1	Antisense locked nucleic acid gapmers to control Candida albicans filamentation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 39, 102469.	1.7	1
2	Polyamine–Oligonucleotide Conjugates: 2′-OMe-Triazole-Linked 1,4,7,10-Tetraazacyclododecane and Intercalating Dyes and Their Effect on the Thermal Stability of DNA Duplexes. Pharmaceutics, 2022, 14, 66.	2.0	3
3	Polyamineâ€Functionalized 2â€2â€Aminoâ€LNA in Oligonucleotides: Facile Synthesis of New Monomers and Highâ€Affinity Binding towards ssDNA and dsDNA. Chemistry - A European Journal, 2021, 27, 1416-1422.	1.7	7
4	Can Vitamin B12 Assist the Internalization of Antisense LNA Oligonucleotides into Bacteria?. Antibiotics, 2021, 10, 379.	1.5	7
5	Novel assemblies based on oligonucleotides containing intercalating nucleic acid monomers. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 82-96.	0.4	0
6	Gapmer Antisense Oligonucleotides Containing 2′,3′â€Dideoxyâ€2′â€fluoroâ€3′―C â€hydroxymeth Nucleotides Display Siteâ€Specific RNaseâ€H Cleavage and Induce Gene Silencing. Chemistry - A European Journal, 2020, 26, 1368-1379.	ylâ€Î²â€•d 1.7	l â€lyxofuran 7
7	Carbazole modified oligonucleotides: synthesis, hybridization studies and fluorescence properties. Organic and Biomolecular Chemistry, 2020, 18, 6935-6948.	1.5	4
8	Alpha-l-Locked Nucleic Acid-Modified Antisense Oligonucleotides Induce Efficient Splice Modulation In Vitro. International Journal of Molecular Sciences, 2020, 21, 2434.	1.8	6
9	microRNA-155 inhibition restores Fibroblast Growth Factor 7 expression in diabetic skin and decreases wound inflammation. Scientific Reports, 2019, 9, 5836.	1.6	45
10	Unlocked nucleic acid modified primer-based enzymatic polymerization assay: towards allele-specific genotype detection of human platelet antigens. RSC Advances, 2018, 8, 32770-32774.	1.7	1
11	Development of an Efficient Gâ€Quadruplexâ€Stabilised Thrombinâ€Binding Aptamer Containing a Threeâ€Carbon Spacer Molecule. ChemBioChem, 2017, 18, 755-763.	1.3	26
12	LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Scientific Reports, 2017, 7, 11043.	1.6	28
13	Synthesis and Biophysical Investigations of Oligonucleotides Containing Galactose-Modified DNA, LNA, and 2′-Amino-LNA Monomers. Journal of Organic Chemistry, 2016, 81, 10845-10856.	1.7	11
14	Next-generation bis-locked nucleic acids with stacking linker and 2′-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Research, 2016, 44, 2007-2019.	6.5	24
15	Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Research, 2013, 41, 3257-3273.	6.5	25
16	Conjugation of a 3-(1H-phenanthro[9,10-d]imidazol-2-yl)-1H-indole intercalator to a triplex oligonucleotide and to a three-way junction. Bioorganic and Medicinal Chemistry, 2012, 20, 207-214.	1.4	4
17	Synthesis of locked pyranosyl nucleic acid (LpNA). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7376-7378.	1.0	6
18	Using an aryl phenanthroimidazole moiety as a conjugated flexible intercalator to improve the hybridization efficiency of a triplex-forming oligonucleotide. Bioorganic and Medicinal Chemistry, 2008, 16, 9937-9947.	1.4	13

#	Article	IF	CITATIONS
19	New Emivirine (MKC-442) Analogues Containing a Tetrahydronaphthalene at C-6 and their Anti-HIV Activity. Monatshefte $F\tilde{A}^{1}\!\!/_{\!4}r$ Chemie, 2007, 138, 495-503.	0.9	4
20	Twisted Intercalating Nucleic Acids – Intercalator Influence on Parallel Triplex Stabilities. European Journal of Organic Chemistry, 2006, 2006, 3960-3968.	1.2	25
21	Synthesis of 6-(3,5-Dichlorobenzyl) Derivatives as Isosteric Analogues of the HIV Drug 6-(3,5-Dimethylbenzyl)-1-(ethoxymethyl)-5-isopropyluracil (GCA-186). Archiv Der Pharmazie, 2005, 338, 299-304.	2.1	17
22	Unexpected Isolation of 4â€Isothiocyanatomethyleneâ€4Hâ€pyridineâ€1â€carboxylic Acid Ethyl Ester as Potential Template in Organic Synthesis. Synthetic Communications, 2005, 35, 2475-2480.	l 1.1	2
23	Synthesis and Evaluation of Double-Prodrugs against HIV. Conjugation of D4T with 6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (MKC-442, Emivirine)-Type Reverse Transcriptase Inhibitors via the SATE Prodrug Approach. Journal of Medicinal Chemistry, 2005, 48, 1211-1220.	2.9	22
24	Facile route for the synthesis of the iminosugar nucleoside (3R,4R)-1-(pyren-1-yl)-4-(hydroxymethyl)pyrrolidin-3-ol. Carbohydrate Research, 2004, 339, 1565-1568.	1.1	4
25	Synthesis of Novel N-1 (Allyloxymethyl) Analogues of 6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (MKC-442, Emivirine) with Improved Activity Against HIV-1 and Its Mutants. Journal of Medicinal Chemistry, 2002, 45, 5721-5726.	2.9	69
26	Synthesis of imidazoles as novel emivirine and Sâ€DABO analogues. Journal of Heterocyclic Chemistry, 2002, 39, 375-382.	1.4	20
27	Synthesis of New MKC-442 Analogues Containing Alkenyl Chains or Reactive Functionalities at C-5. Monatshefte Fýr Chemie, 2002, 133, 1031-1043.	0.9	15
28	Synthesis of annelated analogues of 6-benzyl-1-(ethoxymethyl)-5-isopropyluracil (MKC-442) using 1,3-oxazine-2,4(3H )-diones as key intermediates. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3035-3038.	1.3	10
29	Synthesis of α-Arabinose Nucleosides from 6-Substituted Uracils. Liebigs Annalen Der Chemie, 1993, 1993, 1-5.	0.8	4
30	Convergent synthesis of 2′,3′-dideoxy-3′-methylthio and 2′,3′-dideoxy-3′-mercapto nucleosides a disulfide analogues — Potential anti-HIV agents. Monatshefte FÃ⅓r Chemie, 1993, 124, 37-53.	and their	11
31	Synthesis of 5-dialkylaminomethyl-3′-azido and 3′-fluoro-2′,3′-dideoxyuridines for evaluation as anti-Hl'agents. Monatshefte Fù⁄₄r Chemie, 1993, 124, 55-64.	V _{0.9}	7
32	Evaluation of Gene Expression Knockâ€Down by Chemically and Structurally Modified Gapmer Antisense Oligonucleotides. ChemBioChem, 0, , .	1.3	1