Per Trolle JÃ, rgensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9063772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Novel N-1 (Allyloxymethyl) Analogues of 6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (MKC-442, Emivirine) with Improved Activity Against HIV-1 and Its Mutants. Journal of Medicinal Chemistry, 2002, 45, 5721-5726.	6.4	69
2	microRNA-155 inhibition restores Fibroblast Growth Factor 7 expression in diabetic skin and decreases wound inflammation. Scientific Reports, 2019, 9, 5836.	3.3	45
3	LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Scientific Reports, 2017, 7, 11043.	3.3	28
4	Development of an Efficient Gâ€Quadruplexâ€Stabilised Thrombinâ€Binding Aptamer Containing a Threeâ€Carbon Spacer Molecule. ChemBioChem, 2017, 18, 755-763.	2.6	26
5	Twisted Intercalating Nucleic Acids – Intercalator Influence on Parallel Triplex Stabilities. European Journal of Organic Chemistry, 2006, 2006, 3960-3968.	2.4	25
6	Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Research, 2013, 41, 3257-3273.	14.5	25
7	Next-generation bis-locked nucleic acids with stacking linker and 2′-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Research, 2016, 44, 2007-2019.	14.5	24
8	Synthesis and Evaluation of Double-Prodrugs against HIV. Conjugation of D4T with 6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (MKC-442, Emivirine)-Type Reverse Transcriptase Inhibitors via the SATE Prodrug Approach. Journal of Medicinal Chemistry, 2005, 48, 1211-1220.	6.4	22
9	Synthesis of imidazoles as novel emivirine and Sâ€ÐABO analogues. Journal of Heterocyclic Chemistry, 2002, 39, 375-382.	2.6	20
10	Synthesis of 6-(3,5-Dichlorobenzyl) Derivatives as Isosteric Analogues of the HIV Drug 6-(3,5-Dimethylbenzyl)-1-(ethoxymethyl)-5-isopropyluracil (GCA-186). Archiv Der Pharmazie, 2005, 338, 299-304.	4.1	17
11	Synthesis of New MKC-442 Analogues Containing Alkenyl Chains or Reactive Functionalities at C-5. Monatshefte Für Chemie, 2002, 133, 1031-1043.	1.8	15
12	Using an aryl phenanthroimidazole moiety as a conjugated flexible intercalator to improve the hybridization efficiency of a triplex-forming oligonucleotide. Bioorganic and Medicinal Chemistry, 2008, 16, 9937-9947.	3.0	13
13	Convergent synthesis of 2′,3′-dideoxy-3′-methylthio and 2′,3′-dideoxy-3′-mercapto nucleosides a disulfide analogues — Potential anti-HIV agents. Monatshefte FÃ1⁄4r Chemie, 1993, 124, 37-53.	and their 1.8	11
14	Synthesis and Biophysical Investigations of Oligonucleotides Containing Galactose-Modified DNA, LNA, and 2′-Amino-LNA Monomers. Journal of Organic Chemistry, 2016, 81, 10845-10856.	3.2	11
15	Synthesis of annelated analogues of 6-benzyl-1-(ethoxymethyl)-5-isopropyluracil (MKC-442) using 1,3-oxazine-2,4(3H )-diones as key intermediates. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3035-3038.	1.3	10
16	Synthesis of 5-dialkylaminomethyl-3′-azido and 3′-fluoro-2′,3′-dideoxyuridines for evaluation as anti-H agents. Monatshefte Für Chemie, 1993, 124, 55-64.	IV 1.8	7
17	Gapmer Antisense Oligonucleotides Containing 2′,3′â€Dideoxyâ€2′â€fluoroâ€3′―C â€hydroxymeth Nucleotides Display Siteâ€Specific RNaseâ€H Cleavage and Induce Gene Silencing. Chemistry - A European Journal, 2020, 26, 1368-1379.	ylâ€Î²â€•c 3.3	l â€lyxofura 7
18	Polyamineâ€Functionalized 2′â€Aminoâ€LNA in Oligonucleotides: Facile Synthesis of New Monomers and Highâ€Affinity Binding towards ssDNA and dsDNA. Chemistry - A European Journal, 2021, 27, 1416-1422.	3.3	7

Per Trolle JÄ, rgensen

#	Article	IF	CITATIONS
19	Can Vitamin B12 Assist the Internalization of Antisense LNA Oligonucleotides into Bacteria?. Antibiotics, 2021, 10, 379.	3.7	7
20	Synthesis of locked pyranosyl nucleic acid (LpNA). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7376-7378.	2.2	6
21	Alpha-l-Locked Nucleic Acid-Modified Antisense Oligonucleotides Induce Efficient Splice Modulation In Vitro. International Journal of Molecular Sciences, 2020, 21, 2434.	4.1	6
22	Synthesis of α-Arabinose Nucleosides from 6-Substituted Uracils. Liebigs Annalen Der Chemie, 1993, 1993, 1-5.	0.8	4
23	Facile route for the synthesis of the iminosugar nucleoside (3R,4R)-1-(pyren-1-yl)-4-(hydroxymethyl)pyrrolidin-3-ol. Carbohydrate Research, 2004, 339, 1565-1568.	2.3	4
24	New Emivirine (MKC-442) Analogues Containing a Tetrahydronaphthalene at C-6 and their Anti-HIV Activity. Monatshefte F¼r Chemie, 2007, 138, 495-503.	1.8	4
25	Conjugation of a 3-(1H-phenanthro[9,10-d]imidazol-2-yl)-1H-indole intercalator to a triplex oligonucleotide and to a three-way junction. Bioorganic and Medicinal Chemistry, 2012, 20, 207-214.	3.0	4
26	Carbazole modified oligonucleotides: synthesis, hybridization studies and fluorescence properties. Organic and Biomolecular Chemistry, 2020, 18, 6935-6948.	2.8	4
27	Polyamine–Oligonucleotide Conjugates: 2′-OMe-Triazole-Linked 1,4,7,10-Tetraazacyclododecane and Intercalating Dyes and Their Effect on the Thermal Stability of DNA Duplexes. Pharmaceutics, 2022, 14, 66.	4.5	3
28	Unexpected Isolation of 4â€lsothiocyanatomethyleneâ€4Hâ€pyridineâ€1â€carboxylic Acid Ethyl Ester as Potentia Template in Organic Synthesis. Synthetic Communications, 2005, 35, 2475-2480.	 2.1	2
29	Unlocked nucleic acid modified primer-based enzymatic polymerization assay: towards allele-specific genotype detection of human platelet antigens. RSC Advances, 2018, 8, 32770-32774.	3.6	1
30	Antisense locked nucleic acid gapmers to control Candida albicans filamentation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 39, 102469.	3.3	1
31	Evaluation of Gene Expression Knockâ€Đown by Chemically and Structurally Modified Gapmer Antisense Oligonucleotides. ChemBioChem, 0, , .	2.6	1
32	Novel assemblies based on oligonucleotides containing intercalating nucleic acid monomers. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 82-96.	1.1	0