Ludovic Tailleux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9063059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. ELife, 2020, 9, .	6.0	66
2	Tri-mannose grafting of chitosan nanocarriers remodels the macrophage response to bacterial infection. Journal of Nanobiotechnology, 2019, 17, 15.	9.1	18
3	Gene activation precedes DNA demethylation in response to infection in human dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6938-6943.	7.1	127
4	B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 801-813.	5.6	63
5	Predicting susceptibility to tuberculosis based on gene expression profiling in dendritic cells. Scientific Reports, 2017, 7, 5702.	3.3	8
6	Purinergic Signaling: A Common Path in the Macrophage Response against Mycobacterium tuberculosis and Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, 2017, 7, 347.	3.9	20
7	Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Scientific Reports, 2016, 6, 33162.	3.3	86
8	Mycobacterial infection induces a specific human innate immune response. Scientific Reports, 2015, 5, 16882.	3.3	63
9	Ecto-5′-Nucleotidase (CD73) Deficiency in Mycobacterium tuberculosis-Infected Mice Enhances Neutrophil Recruitment. Infection and Immunity, 2015, 83, 3666-3674.	2.2	14
10	Bacterial Infection Drives the Expression Dynamics of microRNAs and Their isomiRs. PLoS Genetics, 2015, 11, e1005064.	3.5	60
11	Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Research, 2015, 25, 1801-1811.	5.5	195
12	A genomic portrait of the genetic architecture and regulatory impact of microRNA expression in response to infection. Genome Research, 2014, 24, 850-859.	5.5	60
13	Extracellular Adenosine Triphosphate Affects the Response of Human Macrophages Infected With Mycobacterium tuberculosis. Journal of Infectious Diseases, 2014, 210, 824-833.	4.0	18
14	Deciphering the genetic architecture of variation in the immune response to <i>Mycobacterium tuberculosis</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1204-1209.	7.1	238
15	Activation of Type III Interferon Genes by Pathogenic Bacteria in Infected Epithelial Cells and Mouse Placenta. PLoS ONE, 2012, 7, e39080.	2.5	85
16	Population variation in NAIP functional copy number confers increased cell death upon Legionella pneumophila infection. Human Immunology, 2012, 73, 196-200.	2.4	21
17	Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host and Microbe, 2011, 10, 248-259.	11.0	304
18	A murine DC-SIGN homologue contributes to early host defense against <i>Mycobacterium tuberculosis</i> . Journal of Experimental Medicine, 2009, 206, 2205-2220.	8.5	98

LUDOVIC TAILLEUX

#	Article	IF	CITATIONS
19	Probing Host Pathogen Cross-Talk by Transcriptional Profiling of Both Mycobacterium tuberculosis and Infected Human Dendritic Cells and Macrophages. PLoS ONE, 2008, 3, e1403.	2.5	172
20	Signature-Tagged Transposon Mutagenesis Identifies Novel Mycobacterium tuberculosis Genes Involved in the Parasitism of Human Macrophages. Infection and Immunity, 2007, 75, 504-507.	2.2	69
21	Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence?. PLoS ONE, 2006, 1, e43.	2.5	261
22	Promoter Variation in the DC-SIGN–Encoding Gene CD209 Is Associated with Tuberculosis. PLoS Medicine, 2006, 3, e20.	8.4	166
23	DC-SIGN Induction in Alveolar Macrophages Defines Privileged Target Host Cells for Mycobacteria in Patients with Tuberculosis. PLoS Medicine, 2005, 2, e381.	8.4	153
24	Mycobacterium tuberculosis and Dendritic Cells: Whos Manipulating Whom?. Current Immunology Reviews, 2005, 1, 101-105.	1.2	5
25	DC-SIGN Is the Major <i>Mycobacterium tuberculosis</i> Receptor on Human Dendritic Cells. Journal of Experimental Medicine, 2003, 197, 121-127.	8.5	587
26	How is the phagocyte lectin keyboard played? Master class lesson by Mycobacterium tuberculosis. Trends in Microbiology, 2003, 11, 259-263.	7.7	44
27	Constrained Intracellular Survival of <i>Mycobacterium tuberculosis</i> in Human Dendritic Cells. Journal of Immunology, 2003, 170, 1939-1948.	0.8	155
28	CD13/N-aminopeptidase is involved in the development of dendritic cells and macrophages from cord blood CD34+ cells. Blood, 2000, 95, 453-460.	1.4	45