
haluk Beyenal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9063020/publications.pdf Version: 2024-02-01

HALLIK REVENAL

#	Article	IF	CITATIONS
1	Biofilm matrix and artificial mediator for efficient electron transport in CO2 microbial electrosynthesis. Chemical Engineering Journal, 2022, 427, 131885.	6.6	31
2	Rapid differentiation of antibiotic-susceptible and -resistant bacteria through mediated extracellular electron transfer. Biosensors and Bioelectronics, 2022, 197, 113754.	5.3	15
3	<i>In Vitro</i> Antibiofilm Activity of Hydrogen Peroxide-Generating Electrochemical Bandage against Yeast Biofilms. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0179221.	1.4	5
4	Control of carbon monoxide dehydrogenase orientation by site-specific immobilization enables direct electrical contact between enzyme cofactor and solid surface. Communications Biology, 2022, 5, 390.	2.0	6
5	Large-scale switchable potentiostatically controlled/microbial fuel cell bioelectrochemical wastewater treatment system. Bioelectrochemistry, 2021, 138, 107724.	2.4	18
6	The effect of additional salinity on performance of a phosphate buffer saline buffered three-electrode bioelectrochemical system inoculated with wastewater. Bioresource Technology, 2021, 320, 124291.	4.8	8
7	An Integrated HOCl-Producing E-Scaffold Is Active against Monomicrobial and Polymicrobial Biofilms. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	12
8	Microbial fuel cells: Current trends and emerging applications. Bioresource Technology, 2021, 324, 124687.	4.8	6
9	<i>In Vitro</i> Antibacterial Activity of Hydrogen Peroxide and Hypochlorous Acid, Including That Generated by Electrochemical Scaffolds. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	15
10	Hydrogen peroxideâ€producing electrochemical bandage controlled by a wearable potentiostat for treatment of wound infections. Biotechnology and Bioengineering, 2021, 118, 2815-2821.	1.7	18
11	Flow Injection Electrochemical Quartz Crystal Microbalance with ICP-OES Detection: Recovery of Silver by Electrodeposition with Redox Replacement in a Flow Cell. Journal of the Electrochemical Society, 2021, 168, 056518.	1.3	7
12	Electrochemical detection of flavin mononucleotide using mineral-filmed microelectrodes. Journal of Electroanalytical Chemistry, 2021, 892, 115307.	1.9	1
13	Electrochemically Active Biofilms as an Indicator of Soil Health. Journal of the Electrochemical Society, 2021, 168, 087511.	1.3	2
14	Enhanced bioelectrochemical nitrogen removal in flow through electrodes. Sustainable Energy Technologies and Assessments, 2021, 47, 101507.	1.7	1
15	Biofilm addition improves sand strength over a wide range of saturations. Biofilm, 2021, 3, 100050.	1.5	4
16	Kinetics and scale up of oxygen reducing cathodic biofilms. Biofilm, 2021, 3, 100053.	1.5	3
17	Hydrogen-peroxide generating electrochemical bandage is active in vitro against mono- and dual-species biofilms. Biofilm, 2021, 3, 100055.	1.5	10
18	Interactions between hyaluronic acid and CoCrMo alloy surface in simulated synovial fluids. Biosurface and Biotribology, 2021, 7, 239.	0.6	0

#	Article	IF	CITATIONS
19	Hypochlorous Acid-Generating Electrochemical Catheter Prototype for Prevention of Intraluminal Infection. Microbiology Spectrum, 2021, 9, e0055721.	1.2	4
20	Exosomes as Powerful Engines in Cancer: Isolation, Characterization and Detection Techniques. Biosensors, 2021, 11, 518.	2.3	21
21	Effect of electrode spacing on electron transfer and conductivity of Geobacter sulfurreducens biofilms. Bioelectrochemistry, 2020, 131, 107395.	2.4	17
22	Preconcentration mechanism of trivalent lanthanum on eQCM electrodes in the presence of α-hydroxy isobutyric acid. Journal of Electroanalytical Chemistry, 2020, 857, 113731.	1.9	3
23	Electron donor availability controls scale up of anodic biofilms. Bioelectrochemistry, 2020, 132, 107403.	2.4	4
24	Growth of â€~Candidatus Liberibacter asiaticus' in a host-free microbial culture is associated with microbial community composition. Enzyme and Microbial Technology, 2020, 142, 109691.	1.6	7
25	Sequential Hypertonic-Hypotonic Treatment Enhances Efficacy of Antibiotic against Acinetobacter baumannii Biofilm Communities. Antibiotics, 2020, 9, 832.	1.5	4
26	Biomass-derived nanocarbon materials for biological applications: challenges and prospects. Journal of Materials Chemistry B, 2020, 8, 9668-9678.	2.9	16
27	Hydrogen Peroxide-Generating Electrochemical Scaffold Activity against Trispecies Biofilms. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	8
28	Electrochemical precipitation of neptunium with a micro electrochemical quartz crystal microbalance. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 1021-1030.	0.7	1
29	Controlled replication of â€~ Candidatus Liberibacter asiaticus â€~ DNA in citrus leaf discs. Microbial Biotechnology, 2020, 13, 747-759.	2.0	7
30	Fatty Acids as Antibiofilm and Antivirulence Agents. Trends in Microbiology, 2020, 28, 753-768.	3.5	132
31	Overestimation of biofilm conductance determined by using the split electrode as the microbial respiration. Journal of Power Sources, 2020, 453, 227906.	4.0	6
32	Hypochlorous acid-generating electrochemical scaffold eliminates <i>Candida albicans</i> biofilms. Journal of Applied Microbiology, 2020, 129, 776-786.	1.4	18
33	Threeâ€dimensional biofilm image reconstruction for assessing structural parameters. Biotechnology and Bioengineering, 2020, 117, 2460-2468.	1.7	3
34	Monitoring Electron Transfer Rates of Electrode-Respiring Cells. , 2020, , 76-84.		0
35	Hydrogenâ€Peroxideâ€Generating Electrochemical Scaffold Eradicates Methicillinâ€Resistant <i>Staphylococcus aureus</i> Biofilms. Global Challenges, 2019, 3, 1800101.	1.8	15
36	Host-free biofilm culture of "Candidatus Liberibacter asiaticus,―the bacterium associated with Huanglongbing. Biofilm, 2019, 1, 100005.	1.5	29

#	Article	IF	CITATIONS
37	Photosynthetic activity assessment in mixotrophically cultured Chlorella vulgaris biofilms at various developmental stages. Algal Research, 2019, 38, 101408.	2.4	30
38	In situ enrichment of microbial communities on polarized electrodes deployed in alkaline hot springs. Journal of Power Sources, 2019, 414, 547-556.	4.0	11
39	The infection of its insect vector by bacterial plant pathogen "Candidatus Liberibacter solanacearum" is associated with altered vector physiology. Enzyme and Microbial Technology, 2019, 129, 109358.	1.6	6
40	Responses of <i>Acinetobacter baumannii</i> Bound and Loose Extracellular Polymeric Substances to Hyperosmotic Agents Combined with or without Tobramycin: An Atomic Force Microscopy Study. Langmuir, 2019, 35, 9071-9083.	1.6	6
41	Design and Finite Element Model of a Microfluidic Platform with Removable Electrodes for Electrochemical Analysis. Journal of the Electrochemical Society, 2019, 166, B125-B132.	1.3	12
42	Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms. Scientific Reports, 2019, 9, 2683.	1.6	43
43	Physiochemical changes mediated by "Candidatus Liberibacter asiaticus―in Asian citrus psyllids. Scientific Reports, 2019, 9, 16375.	1.6	13
44	Structural and metabolic responses of Staphylococcus aureus biofilms to hyperosmotic and antibiotic stress. Biotechnology and Bioengineering, 2018, 115, 1594-1603.	1.7	11
45	Engineering rheology of electrolytes using agar for improving the performance of bioelectrochemical systems. Bioresource Technology, 2018, 263, 242-249.	4.8	10
46	Impact of intermittent polarization on electrode-respiring Geobacter sulfurreducens biofilms. Journal of Power Sources, 2018, 406, 96-101.	4.0	14
47	Electrochemical Preconcentration Mechanism of Trivalent Lanthanum. Journal of the Electrochemical Society, 2018, 165, D654-D661.	1.3	7
48	Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms. Applied and Environmental Microbiology, 2017, 83, .	1.4	15
49	Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Communications, 2017, 8, 13924.	5.8	102
50	Autonomous Device for Evaluating the Field Performance of Microbial Fuel Cells in Remote Areas. Journal of the Electrochemical Society, 2017, 164, H3030-H3036.	1.3	9
51	The Influence of Energy Harvesting Strategies on Performance and Microbial Community for Sediment Microbial Fuel Cells. Journal of the Electrochemical Society, 2017, 164, H3109-H3114.	1.3	20
52	New rotating disk hematite film electrode for riboflavin detection. Journal of Electroanalytical Chemistry, 2017, 798, 42-50.	1.9	24
53	A Fumarate Microbiosensor for Use in Biofilms. Journal of the Electrochemical Society, 2017, 164, H3058-H3064.	1.3	9
54	Cross-Linked Protein Nanofilter with Antibacterial Properties for Multifunctional Air Filtration. ACS Applied Materials & Interfaces, 2017, 9, 22846-22855.	4.0	65

#	Article	IF	CITATIONS
55	Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance. Journal of Power Sources, 2017, 356, 549-555.	4.0	13
56	Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities. Applied and Environmental Microbiology, 2017, 83, .	1.4	14
57	Biomass production in Chlorella vulgaris biofilm cultivated under mixotrophic growth conditions. Algal Research, 2017, 26, 153-160.	2.4	35
58	Trade-offs between microbiome diversity and productivity in a stratified microbial mat. ISME Journal, 2017, 11, 405-414.	4.4	26
59	Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources. Applied Energy, 2017, 192, 490-497.	5.1	75
60	Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat. FEMS Microbiology Ecology, 2017, 93, .	1.3	23
61	Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms. Frontiers in Environmental Science, 2017, 5, .	1.5	9
62	Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility. Npj Biofilms and Microbiomes, 2016, 2, 2.	2.9	51
63	Maltodextrin enhances biofilm elimination by electrochemical scaffold. Scientific Reports, 2016, 6, 36003.	1.6	12
64	Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms. Enzyme and Microbial Technology, 2016, 95, 69-75.	1.6	19
65	Biological synthesis of nanoparticles in biofilms. Enzyme and Microbial Technology, 2016, 95, 4-12.	1.6	41
66	Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016, 14, 651-662.	13.6	1,224
67	EQCM and Surface pH Studies on Lanthanum Accumulation on Electrodes in Aqueous Solution. Journal of the Electrochemical Society, 2016, 163, H866-H870.	1.3	7
68	Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Repair and Regeneration, 2016, 24, 373-383.	1.5	96
69	A hydrogen peroxide microelectrode to use in bioelectrochemical systems. Sensors and Actuators B: Chemical, 2016, 226, 429-435.	4.0	17
70	Microbiosensor for the detection of acetate in electrode-respiring biofilms. Biosensors and Bioelectronics, 2016, 81, 517-523.	5.3	48
71	Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Scientific Reports, 2015, 5, 14908.	1.6	68
72	Vancomycin and maltodextrin affect structure and activity of <i>Staphylococcus aureus</i> biofilms. Biotechnology and Bioengineering, 2015, 112, 2562-2570.	1.7	15

#	Article	IF	CITATIONS
73	Regulation of electron transfer processes affects phototrophic mat structure and activity. Frontiers in Microbiology, 2015, 6, 909.	1.5	11
74	Colonization of Epidermal Tissue by Staphylococcus aureus Produces Localized Hypoxia and Stimulates Secretion of Antioxidant and Caspase-14 Proteins. Infection and Immunity, 2015, 83, 3026-3034.	1.0	14
75	Neutral red-mediated microbial electrosynthesis by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis. Bioresource Technology, 2015, 195, 57-65.	4.8	58
76	The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresource Technology, 2015, 192, 689-695.	4.8	69
77	A Self-Sustainable Power Management System for Reliable Power Scaling Up of Sediment Microbial Fuel Cells. IEEE Transactions on Power Electronics, 2015, 30, 4626-4632.	5.4	26
78	Excess surface area in bioelectrochemical systems causes ion transport limitations. Biotechnology and Bioengineering, 2015, 112, 858-866.	1.7	11
79	Staphylococcus aureus Induces Hypoxia and Cellular Damage in Porcine Dermal Explants. Infection and Immunity, 2015, 83, 2531-2541.	1.0	52
80	Electrochemical biofilm control: a review. Biofouling, 2015, 31, 745-758.	0.8	87
81	Local Current Variation by Depth in <i>Geobacter Sulfurreducens</i> Biofilms. Journal of the Electrochemical Society, 2014, 161, H3070-H3075.	1.3	13
82	Investigation of Electron Transfer by <i>Geobacter sulfurreducens</i> Biofilms by using an Electrochemical Quartz Crystal Microbalance. ChemElectroChem, 2014, 1, 2007-2016.	1.7	19
83	Multiple Cathodic Reaction Mechanisms in Seawater Cathodic Biofilms Operating in Sediment Microbial Fuel Cells. ChemSusChem, 2014, 7, 2898-2906.	3.6	20
84	A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques. Water Science and Technology, 2014, 69, 966-973.	1.2	14
85	Reconstruction of biofilm images: combining local and global structural parameters. Biofouling, 2014, 30, 1141-1154.	0.8	6
86	Alternative power sources for remote sensors: A review. Journal of Power Sources, 2014, 245, 129-143.	4.0	175
87	Mass transfer studies of <i>Geobacter sulfurreducens</i> biofilms on rotating disk electrodes. Biotechnology and Bioengineering, 2014, 111, 285-294.	1.7	61
88	Scale-up of sediment microbial fuel cells. Journal of Power Sources, 2014, 272, 311-319.	4.0	110
89	A transâ€outer membrane porinâ€cytochrome protein complex for extracellular electron transfer by <scp><i>G</i>, Scp><i>eobacter sulfurreducens</i>â€<scp>PCA</scp>. Environmental Microbiology Reports, 2014, 6, 776-785.</scp>	1.0	178
90	Self-powered wastewater treatment for the enhanced operation of a facultative lagoon. Journal of Power Sources, 2014, 269, 284-292.	4.0	31

#	Article	IF	CITATIONS
91	Differential Protection from Tobramycin by Extracellular Polymeric Substances from Acinetobacter baumannii and Staphylococcus aureus Biofilms. Antimicrobial Agents and Chemotherapy, 2014, 58, 4755-4761.	1.4	60
92	Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat. Frontiers in Microbiology, 2014, 5, 11.	1.5	31
93	Design and performance considerations for benthic microbial fuel cells. , 2014, , .		1
94	Characterization of Bacteria–Biomaterial Interactions, from a Single Cell to Biofilms. , 2013, , 207-253.		5
95	Modeling biofilms with dual extracellular electron transfer mechanisms. Physical Chemistry Chemical Physics, 2013, 15, 19262.	1.3	70
96	Microsensors and Microscale Gradients in Biofilms. Advances in Biochemical Engineering/Biotechnology, 2013, 146, 235-256.	0.6	13
97	Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring. Journal of Power Sources, 2013, 233, 79-85.	4.0	110
98	Diffusion in biofilms respiring on electrodes. Energy and Environmental Science, 2013, 6, 595-607.	15.6	95
99	Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms. Energy and Environmental Science, 2013, 6, 1827.	15.6	73
100	Microscale Gradients of Oxygen, Hydrogen Peroxide, and pH in Freshwater Cathodic Biofilms. ChemSusChem, 2013, 6, 1252-1261.	3.6	46
101	The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling. Frontiers in Microbiology, 2013, 4, 323.	1.5	75
102	Microscale gradients and their role in electron-transfer mechanisms in biofilms. Biochemical Society Transactions, 2012, 40, 1315-1318.	1.6	24
103	Characterization of Mono- and Mixed-Culture Campylobacter jejuni Biofilms. Applied and Environmental Microbiology, 2012, 78, 1033-1038.	1.4	81
104	Integration of Electrochemical Methods with Magnetic Resonance and Electron Microscopies for the Study of Geobacter sulfurreducens Biofilms. Microscopy and Microanalysis, 2012, 18, 14-15.	0.2	0
105	Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environmental Microbiology, 2012, 14, 2901-2910.	1.8	44
106	Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium. Water Research, 2012, 46, 227-234.	5.3	28
107	Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water. Water Research, 2012, 46, 3989-3998.	5.3	23
108	Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments. Applied and Environmental Microbiology, 2012, 78, 8001-8009.	1.4	26

#	Article	IF	CITATIONS
109	Mechanical, In vitro Antimicrobial, and Biological Properties of Plasma-Sprayed Silver-Doped Hydroxyapatite Coating. ACS Applied Materials & Interfaces, 2012, 4, 1341-1349.	4.0	167
110	Electrochemically active biofilms: facts and fiction. A review. Biofouling, 2012, 28, 789-812.	0.8	183
111	Electrochemical biofilm control: mechanism of action. Biofouling, 2012, 28, 769-778.	0.8	58
112	pH, redox potential and local biofilm potential microenvironments within <i>Geobacter sulfurreducens</i> biofilms and their roles in electron transfer. Biotechnology and Bioengineering, 2012, 109, 2651-2662.	1.7	112
113	A voltammetric flavin microelectrode for use in biofilms. Sensors and Actuators B: Chemical, 2012, 161, 929-937.	4.0	28
114	Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Materials Science and Engineering C, 2012, 32, 1112-1120.	3.8	74
115	Redox and pH Microenvironments within <i>Shewanella oneidensis</i> MR-1 Biofilms Reveal an Electron Transfer Mechanism. Environmental Science & Technology, 2011, 45, 6654-6660.	4.6	61
116	Contribution of Extracellular Polymeric Substances from <i>Shewanella</i> sp. HRCR-1 Biofilms to U(VI) Immobilization. Environmental Science & Technology, 2011, 45, 5483-5490.	4.6	149
117	Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells. Physical Chemistry Chemical Physics, 2011, 13, 21573.	1.3	53
118	Extracellular polymeric substances from <i>Shewanella</i> sp. HRCRâ€1 biofilms: characterization by infrared spectroscopy and proteomics. Environmental Microbiology, 2011, 13, 1018-1031.	1.8	247
119	Biofilm image reconstruction for assessing structural parameters. Biotechnology and Bioengineering, 2011, 108, 1383-1394.	1.7	23
120	Power management system for a 2.5W remote sensor powered by a sediment microbial fuel cell. Journal of Power Sources, 2011, 196, 1171-1177.	4.0	205
121	Increased Transfer of a Multidrug Resistance Plasmid in Escherichia coli Biofilms at the Air-Liquid Interface. Applied and Environmental Microbiology, 2011, 77, 5079-5088.	1.4	101
122	In situ effective diffusion coefficient profiles in live biofilms using pulsedâ€field gradient nuclear magnetic resonance. Biotechnology and Bioengineering, 2010, 106, 928-937.	1.7	76
123	Evaluating the performance of microbial fuel cells powering electronic devices. Journal of Power Sources, 2010, 195, 90-96.	4.0	87
124	<i>Inâ€situ</i> oxygen profiling and lignin modification in guts of woodâ€feeding termites. Insect Science, 2010, 17, 277-290.	1.5	43
125	Immobilization of Uranium in Groundwater Using Biofilms. , 2010, , 1-37.		5
126	Quantification of Electron Transfer Rates to a Solid Phase Electron Acceptor through the Stages of Biofilm Formation from Single Cells to Multicellular Communities. Environmental Science & Technology, 2010, 44, 2721-2727.	4.6	122

#	Article	IF	CITATIONS
127	Intermittent Energy Harvesting Improves the Performance of Microbial Fuel Cells. Environmental Science & Technology, 2009, 43, 4600-4605.	4.6	87
128	Mechanisms of Microbially Influenced Corrosion. Springer Series on Biofilms, 2009, , 35-64.	0.0	30
129	Quorum Sensing: A New Biofouling Control Paradigm in a Membrane Bioreactor for Advanced Wastewater Treatment. Environmental Science & Technology, 2009, 43, 380-385.	4.6	406
130	Methods for imaging and quantifying the structure of biofilms in food processing and other environments. , 2009, , 99-130.		0
131	Scaling up Microbial Fuel Cells. Environmental Science & amp; Technology, 2008, 42, 7643-7648.	4.6	217
132	Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell. Environmental Science & Technology, 2008, 42, 8591-8596.	4.6	274
133	Mechanisms of Microbially Influenced Corrosion. Springer Series on Biofilms, 2008, , 35.	0.0	10
134	Characterizing temporal development of biofilm porosity using artificial neural networks. Water Science and Technology, 2008, 57, 1867-1872.	1.2	1
135	The effect of detachment on biofilm structure and activity: the oscillating pattern of biofilm accumulation. Water Science and Technology, 2007, 55, 429-436.	1.2	19
136	Spatial Patterns of DNA Replication, Protein Synthesis, and Oxygen Concentration within Bacterial Biofilms Reveal Diverse Physiological States. Journal of Bacteriology, 2007, 189, 4223-4233.	1.0	278
137	Uranium Immobilization by Sulfate-Reducing Biofilms Grown on Hematite, Dolomite, And Calcite. Environmental Science & Technology, 2007, 41, 8349-8354.	4.6	35
138	Procedure for Determining Maximum Sustainable Power Generated by Microbial Fuel Cells. Environmental Science & Technology, 2006, 40, 1062-1068.	4.6	162
139	Modeling mass transport and microbial activity in stratified biofilms. Chemical Engineering Science, 2005, 60, 4337-4348.	1.9	39
140	Uranium removal by sulfate reducing biofilms in the presence of carbonates. Water Science and Technology, 2005, 52, 49-55.	1.2	55
141	Biofilms: their structure, activity, and effect on membrane filtration. Water Science and Technology, 2005, 51, 181-192.	1.2	27
142	Microbial Fuel Cell using Anaerobic Respiration as an Anodic Reaction and Biomineralized Manganese as a Cathodic Reactant. Environmental Science & Technology, 2005, 39, 4666-4671.	4.6	288
143	Wireless Sensors Powered by Microbial Fuel Cells. Environmental Science & Technology, 2005, 39, 5037-5042.	4.6	290
144	Biofilms: their structure, activity, and effect on membrane filtration. Water Science and Technology, 2005, 51, 181-92.	1.2	1

#	Article	IF	CITATIONS
145	Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors. Water Science and Technology, 2004, 49, 359-364.	1.2	95
146	An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms. Sensors and Actuators B: Chemical, 2004, 97, 202-210.	4.0	40
147	Quantifying Biofilm Structure: Facts and Fiction. Biofouling, 2004, 20, 1-23.	0.8	112
148	Uranium Immobilization by Sulfate-Reducing Biofilms. Environmental Science & Technology, 2004, 38, 2067-2074.	4.6	105
149	Dynamics of lead immobilization in sulfate reducing biofilms. Water Research, 2004, 38, 2726-2736.	5.3	34
150	Three-dimensional biofilm structure quantification. Journal of Microbiological Methods, 2004, 59, 395-413.	0.7	190
151	An optical microsensor to measure fluorescent light intensity in biofilms. Journal of Microbiological Methods, 2004, 58, 367-374.	0.7	21
152	Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors. Water Science and Technology, 2004, 49, 359-64.	1.2	11
153	The double substrate growth kinetics of Pseudomonas aeruginosa. Enzyme and Microbial Technology, 2003, 32, 92-98.	1.6	69
154	Quantifying selected growth parameters of Leptothrix discophora SP-6 in biofilms from oxygen concentration profiles. Chemical Engineering Science, 2003, 58, 4557-4566.	1.9	18
155	Compromised Host Defense on <i>Pseudomonas aeruginosa</i> Biofilms: Characterization of Neutrophil and Biofilm Interactions. Journal of Immunology, 2003, 171, 4329-4339.	0.4	339
156	Biofilm monitoring: a perfect solution in search of a problem. Water Science and Technology, 2003, 47, 9-18.	1.2	23
157	Internal and External Mass Transfer in Biofilms Grown at Various Flow Velocities. Biotechnology Progress, 2002, 18, 55-61.	1.3	141
158	Growing reproducible biofilms with respect to structure and viable cell counts. Journal of Microbiological Methods, 2001, 47, 1-10.	0.7	47
159	Evaluation of biofilm image thresholding methods. Water Research, 2001, 35, 1149-1158.	5.3	84
160	[23] Limiting-current-type microelectrodes for quantifying mass transport dynamics in biofilmst. Methods in Enzymology, 2001, 337, 339-359.	0.4	8
161	Mass-transport dynamics, activity, and structure of sulfate-reducing biofilms. AICHE Journal, 2001, 47, 1689-1697.	1.8	28
162	Resistance of biofilms containing alginateâ€producing bacteria to disintegration by an alginate degrading enzyme (Algl). Biofouling, 2001, 17, 203-210.	0.8	18

#	Article	IF	CITATIONS
163	Fiber-optic microsensors to measure backscattered light intensity in biofilms. , 2000, , .		0
164	Fiber-optic microsensors to measure backscattered light intensity in biofilms. Applied Optics, 2000, 39, 3408.	2.1	15
165	Quantifying biofilm structure using image analysis. Journal of Microbiological Methods, 2000, 39, 109-119.	0.7	199
166	Combined effect of substrate concentration and flow velocity on effective diffusivity in biofilms. Water Research, 2000, 34, 528-538.	5.3	93
167	Modeling Milk Clotting Activity in the Continuous Production of Microbial Rennet from Mucor miehei. Journal of Food Science, 1999, 64, 525-529.	1.5	14
168	The effect ofD-glucose on milk clotting activity ofMucor miehei in a chemostat with biomass retention. Journal of Chemical Technology and Biotechnology, 1999, 74, 527-532.	1.6	3
169	Production of microbial rennin from Mucor miehei in a continuously fed fermenter. Enzyme and Microbial Technology, 1998, 23, 469-474.	1.6	11
170	The effects of biofilm characteristics on the external mass transfer coefficient in a differential fluidized bed biofilm reactor. Biochemical Engineering Journal, 1998, 1, 53-61.	1.8	18
171	Prediction of substrate consumption rate, average biofilm density and active thickness for a thin spherical biofilm at pseudo-steady state. Biochemical Engineering Journal, 1998, 2, 207-216.	1.8	18
172	An electrochemical technique to measure local flow velocity in biofilms. Water Research, 1998, 32, 3631-3636.	5.3	28
173	Measurement of local effective diffusivity in heterogeneous biofilms. Water Science and Technology, 1998, 38, 171-178.	1.2	171
174	Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Applied Microbiology and Biotechnology, 1997, 47, 610-614.	1.7	85
175	A combined growth model of Zoogloea ramigera including multisubstrate, pH, and agitation effects. Enzyme and Microbial Technology, 1997, 21, 74-78.	1.6	11
176	Prediction of average biofilm density and performance of a spherical bioparticle under substrate inhibition. , 1997, 56, 319-329.		23
177	Predicting average biofilm density of a fully active spherical bioparticle. Journal of Biotechnology, 1996, 52, 39-49.	1.9	7
178	Simultaneous evaluation of effective diffusion coefficients of the substrates in a biofilm with a novel experimental method. Canadian Journal of Chemical Engineering, 1996, 74, 526-533.	0.9	22
179	Effectiveness factor for a hollow-fiber biofilm reactor at maximum substrate consumption. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 62, 149-154.	0.1	7
180	Entrapment of Urease in glycol-containing polymeric matrices and estimation of effective diffusion coefficient of urea. Polymer, 1995, 36, 4091-4096.	1.8	9

66

#	Article	IF	CITATIONS
181	The effects of biofilm thickness on biofilm density and substrate consumption rate in a differential fluidizied bed biofilm reactor (DFBBR). Journal of Biotechnology, 1995, 41, 39-47.	1.9	27
182	Immobilization of urease and estimation of effective diffusion coefficients of urea in HEMA and VP copolymer matrices. Polymer International, 1994, 35, 321-327.	1.6	30
183	A mathematical model for hollow fiber biofilm reactors. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 56, B53-B59.	0.1	4
184	The calculation of simultaneous effective diffusion coefficients of the substrates in a fluidized bed biofilm reactor. Water Science and Technology, 1994, 29, 463-470.	1.2	19
185	Fundamentals of Biofilm Research. , 0, , .		95

186 Fundamentals of Biofilm Research. , 0, , .