Michele Luvisotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9062490/publications.pdf

Version: 2024-02-01

40 papers

979 citations

16 h-index 25 g-index

40 all docs

40 docs citations

times ranked

40

1039 citing authors

#	Article	IF	CITATIONS
1	Clock Synchronization for Wireless Time-Sensitive Networking: A March From Microsecond to Nanosecond. IEEE Industrial Electronics Magazine, 2022, 16, 35-43.	2.3	6
2	Guest Editorial: Industrial Cyber–Physical Systems—New Trends in Computing and Communications. IEEE Transactions on Industrial Informatics, 2021, 17, 3518-3522.	7.2	1
3	Reliable Minimum Cycle Time of 5G NR Based on Data-Driven Channel Characterization. IEEE Transactions on Industrial Informatics, 2021, 17, 7401-7411.	7.2	4
4	Towards High-Performance Wireless Control: \$10^{-7}\$ Packet Error Rate in Real Factory Environments. IEEE Transactions on Industrial Informatics, 2020, 16, 5554-5564.	7.2	16
5	IEEE Access Special Section Editorial: Proximity Service (Prose) Challenges and Applications. IEEE Access, 2020, 8, 169106-169109.	2.6	O
6	A Look Inside 5G Standards to Support Time Synchronization for Smart Manufacturing. IEEE Communications Standards Magazine, 2020, 4, 14-21.	3.6	34
7	Delay Optimization for Industrial Wireless Control Systems Based on Channel Characterization. IEEE Transactions on Industrial Informatics, 2020, 16, 5855-5865.	7.2	14
8	Threshold-Free Physical Layer Authentication Based on Machine Learning for Industrial Wireless CPS. IEEE Transactions on Industrial Informatics, 2019, 15, 6481-6491.	7.2	60
9	Latency Performance of 5G New Radio for Critical Industrial Control Systems. , 2019, , .		13
10	High-Performance Wireless Networks for Industrial Control Applications: New Targets and Feasibility. Proceedings of the IEEE, 2019, 107, 1074-1093.	16.4	79
11	Using a Large Data Set to Improve Industrial Wireless Communications: Latency, Reliability, and Security. IEEE Industrial Electronics Magazine, 2019, 13, 6-12.	2.3	19
12	Packet Detection by a Single OFDM Symbol in URLLC for Critical Industrial Control: A Realistic Study. IEEE Journal on Selected Areas in Communications, 2019, 37, 933-946.	9.7	22
13	Software-Defined Wireless Communication for Industrial Control: A Realistic Approach. IEEE Industrial Electronics Magazine, 2019, 13, 31-37.	2.3	20
14	Location aided commissioning of building automation devices enabled by high accuracy indoor positioning. Journal of Industrial Information Integration, 2019, 15, 258-263.	4.3	4
15	Real-time and non-intrusive on-site diagnosis for commissioning wireless sensor and actuator networks in building automation. Journal of Industrial Information Integration, 2019, 15, 252-257.	4.3	4
16	RCFD: A Novel Channel Access Scheme for Full-Duplex Wireless Networks Based on Contention in Time and Frequency Domains. IEEE Transactions on Mobile Computing, 2018, 17, 2381-2395.	3.9	9
17	Modelling and simulation of a Li-ion energy storage system: Case study from the island of Ventotene in the Tyrrhenian Sea. Journal of Energy Storage, 2018, 15, 57-68.	3.9	8
18	Authentication Based on Channel State Information for Industrial Wireless Communications. , 2018, , .		14

#	Article	IF	CITATIONS
19	Assessing the Impact of Full-Duplex Wireless in Real-Time Industrial Networks. , 2018, , .		1
20	Physical-Layer Security for Industrial Wireless Control Systems: Basics and Future Directions. IEEE Industrial Electronics Magazine, 2018, 12, 18-27.	2.3	61
21	Wireless High-Performance Communications: Improving Effectiveness and Creating Ultrahigh Reliability with Channel Coding. IEEE Industrial Electronics Magazine, 2018, 12, 32-37.	2.3	17
22	On the Use of LoRaWAN for Indoor Industrial IoT Applications. Wireless Communications and Mobile Computing, 2018, 2018, 1-11.	0.8	83
23	Physical Layer Design of High-Performance Wireless Transmission for Critical Control Applications. IEEE Transactions on Industrial Informatics, 2017, 13, 2844-2854.	7.2	50
24	Wireless High-Performance Communications: The Challenges and Opportunities of a New Target. IEEE Industrial Electronics Magazine, 2017, 11, 20-25.	2.3	83
25	A learning algorithm for rate selection in real-time wireless LANs. Computer Networks, 2017, 126, 114-124.	3.2	9
26	IEEE 802.11n for Distributed Measurement Systems. , 2017, , .		0
27	A Dynamic Rate Selection Algorithm for IEEE 802.11 Industrial Wireless LAN. IEEE Transactions on Industrial Informatics, 2017, 13, 846-855.	7.2	30
28	Ultra High Performance Wireless Control for Critical Applications: Challenges and Directions. IEEE Transactions on Industrial Informatics, 2017, 13, 1448-1459.	7.2	137
29	Distributed Clustering Strategies in Industrial Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 2017, 13, 228-237.	7.2	46
30	Real-time wireless extensions of industrial ethernet networks. , 2017, , .		1
31	An innovative approach to rate adaptation in IEEE 802.11 real-time industrial networks. , 2016, , .		2
32	Performance analysis of IEEE 802.11 Rate Selection for Industrial Networks. , 2016, , .		2
33	Statistical QoS analysis of full duplex and half duplex heterogeneous cellular networks. , 2016, , .		8
34	RCFD: A frequency-based channel access scheme for full-duplex wireless networks. , 2016, , .		4
35	On the Use of IEEE 802.11n for Industrial Communications. IEEE Transactions on Industrial Informatics, 2016, 12, 1877-1886.	7.2	92
36	Distributed fault detection in sensor networks via clustering and consensus. , 2015, , .		8

#	Article	IF	CITATIONS
37	Improved Rate Adaptation strategies for real-time industrial IEEE 802.11n WLANs. , 2015, , .		7
38	The IEEE 802.11n wireless LAN for real-time industrial communication. , 2015, , .		6
39	Enhancing the real-time behavior of IEEE 802.11n., 2015, , .		1
40	Performance assessment of an IEEE 802.11-based protocol for real-time communication in agriculture. , $2014, , .$		4