
Hugo Lourenço-Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9062308/publications.pdf

Version: 2024-02-01

HUCO LOURENÃ80-MARTINS

#	Article	IF	CITATIONS
1	Controlling free electrons with optical whispering-gallery modes. Nature, 2020, 582, 46-49.	27.8	132
2	Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nature Communications, 2017, 8, 14999.	12.8	95
3	Visualizing Spatial Variations of Plasmon–Exciton Polaritons at the Nanoscale Using Electron Microscopy. Nano Letters, 2019, 19, 8171-8181.	9.1	77
4	Plexciton Quenching by Resonant Electron Transfer from Quantum Emitter to Metallic Nanoantenna. Nano Letters, 2013, 13, 5972-5978.	9.1	53
5	Extinction and Scattering Properties of High-Order Surface Plasmon Modes in Silver Nanoparticles Probed by Combined Spatially Resolved Electron Energy Loss Spectroscopy and Cathodoluminescence. ACS Photonics, 2016, 3, 1654-1661.	6.6	42
6	Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields. Light: Science and Applications, 2021, 10, 82.	16.6	40
7	Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes. Physical Review X, 2017, 7, .	8.9	36
8	Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. Nano Letters, 2020, 20, 2973-2979.	9.1	36
9	Self-hybridization within non-Hermitian localized plasmonic systems. Nature Physics, 2018, 14, 360-364.	16.7	28
10	Probing Plasmon-NV ^O Coupling at the Nanometer Scale with Photons and Fast Electrons. ACS Photonics, 2018, 5, 324-328.	6.6	24
11	Probing Chirality with Inelastic Electron-Light Scattering. Nano Letters, 2020, 20, 4377-4383.	9.1	23
12	InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Nanotechnology, 2016, 27, 195704.	2.6	19
13	Optical polarization analogue in free electron beams. Nature Physics, 2021, 17, 598-603.	16.7	15
14	Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities. Nano Letters, 2022, 22, 319-327.	9.1	15
15	Nanocross: A Highly Tunable Plasmonic System. Journal of Physical Chemistry C, 2017, 121, 16521-16527.	3.1	10
16	Monolayer and thin <i>h</i> –BN as substrates for electron spectro-microscopy analysis of plasmonic nanoparticles. Applied Physics Letters, 2018, 113, .	3.3	9
17	Hybridization of Gap Modes and Lattice Modes in a Plasmonic Resonator Array with a Metal–Insulator–Metal Structure. ACS Photonics, 2019, 6, 2618-2625.	6.6	6
18	Bridging nano-optics and condensed matter formalisms in a unified description of inelastic scattering of relativistic electron beams. SciPost Physics, 2021, 10, .	4.9	6

HUGO LOURENçO-MARTINS

#	Article	IF	CITATIONS
19	Emergence of point defect states in a plasmonic crystal. Physical Review B, 2019, 100, .	3.2	5
20	Towards Plasmon-Exciton Hybridization at the Nanoscale using STEM EELS. Microscopy and Microanalysis, 2019, 25, 624-625.	0.4	0
21	Visualizing Strong Light-matter Interactions Using Fast Electrons. Microscopy and Microanalysis, 2020, 26, 3182-3184.	0.4	0
22	Coherent Phase Control of Ultrashort Electron Pulses by Traveling Optical Waves and Whispering-gallery Modes. Microscopy and Microanalysis, 2020, 26, 678-680.	0.4	0
23	Imaging Nanoscale Optical Fields with Inelastic Electron-light Scattering. Microscopy and Microanalysis, 2020, 26, 1920-1922.	0.4	0
24	Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Microscopy and Microanalysis, 2021, 27, 320-321.	0.4	0
25	Spectromicroscopies électroniquesÂ: sonder les propriétés optiques de nanomatériaux avec des électrons rapides. Photoniques, 2020, , 39-43.	0.1	0
26	Toward Quantum Optics with Free Electrons. Optics and Photonics News, 2020, 31, 35.	0.5	0
27	Development of phase-shaped electron energy-loss spectroscopy for nano-optics. Advances in Imaging and Electron Physics, 2022, , .	0.2	0
28	A brief introduction to nano-optics with fast electrons. Advances in Imaging and Electron Physics, 2022, , .	0.2	0
29	Exploring nano-optical excitations coupling with fast electrons techniques. Advances in Imaging and Electron Physics, 2022, , .	0.2	0