Tatsuya Oshima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9061961/publications.pdf

Version: 2024-02-01

28 603 14 24 g-index

28 citations 28 28 741

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. Reactive and Functional Polymers, 2008, 68, 376-383.	4.1	149
2	Selective Extraction and Recovery of Cytochromecby Liquidâ [^] Liquid Extraction Using a Calix[6]arene Carboxylic Acid Derivative. Langmuir, 2005, 21, 7280-7284.	3 . 5	44
3	Extraction and separation of a lysine-rich protein by formation of supramolecule between crown ether and protein in aqueous two-phase system. Analytica Chimica Acta, 2010, 674, 211-219.	5.4	40
4	Cellulose aerogel regenerated from ionic liquid solution for immobilized metal affinity adsorption. Carbohydrate Polymers, 2014, 103, 62-69.	10.2	40
5	Adsorption of amino acid derivatives on calixarene carboxylic acid impregnated resins. Reactive and Functional Polymers, 2009, 69, 105-110.	4.1	39
6	Enzymatic polymerization of o-phenylendiamine with cytochrome c activated by a calixarene derivative in organic media. Biochemical Engineering Journal, 2007, 35, 66-70.	3.6	29
7	Enhancement of water solubility of indomethacin by complexation with protein hydrolysate. International Journal of Pharmaceutics, 2013, 453, 587-593.	5.2	27
8	Mutual separation of indium(III), gallium(III) and zinc(II) with alkylated aminophosphonic acids with different basicities of amine moiety. Separation and Purification Technology, 2017, 173, 37-43.	7.9	26
9	Biosorbents for Removing Hazardous Metals and Metalloids. Materials, 2017, 10, 857.	2.9	25
10	Liquid membrane transport of cytochrome c using a calix[6]arene carboxylic acid derivative as a carrier. Journal of Membrane Science, 2008, 307, 284-291.	8.2	24
11	Extraction of Catecholamines by Calixarene Carboxylic Acid Derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 79-85.	1.6	21
12	Selective extraction of histidine derivatives by metal affinity with a copper(II)–chelating ligand complex in an aqueous two-phase system. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 990, 73-79.	2.3	15
13	Effect of structure of aromatic ethers on their extraction of Au(III) from acidic chloride media. Hydrometallurgy, 2019, 183, 207-212.	4.3	15
14	Au(<scp>III</scp>) extraction using ketone compounds with physical properties superior to current commercial extractants. AICHE Journal, 2021, 67, e17214.	3.6	15
15	Adsorption of histidine-containing dipeptides on copper(II) immobilized chelating resin from saline solution. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 876, 116-122.	2.3	14
16	Enhancing the water dispersibility of paclitaxel by complexation with hydrophobic peptides. Colloids and Surfaces B: Biointerfaces, 2015, 135, 408-415.	5.0	13
17	Recognition of exterior protein surfaces using artificial ligands based on calixarenes, crown ethers, and tetraphenylporphyrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 73, 17-32.	1.6	12
18	Recognition of Lysine Residues on Protein Surfaces Using Calixarenes and its Application. Current Drug Discovery Technologies, 2007, 4, 220-228.	1.2	10

#	Article	IF	CITATIONS
19	Adsorption and concentration of histidine-containing dipeptides using divalent transition metals immobilized on a chelating resin. Separation and Purification Technology, 2009, 70, 79-86.	7.9	10
20	Development of highly water-dispersible complexes between coenzyme Q10 and protein hydrolysates. European Journal of Pharmaceutical Sciences, 2019, 136, 104936.	4.0	10
21	Adsorption behavior of metal ions on alkylhistidine extractant impregnated resins: Effect of functional groups of histidine. Separation and Purification Technology, 2013, 114, 11-16.	7.9	5
22	Synergistic effect of nitrogen-containing donors on extraction of divalent metal ions using p-tert-octylphenoxyacetic acid. Separation and Purification Technology, 2015, 141, 301-306.	7.9	5
23	A hydrophobic peptide fraction that enhances the water dispersibility of curcumin. Asian Journal of Pharmaceutical Sciences, 2016, 11, 631-640.	9.1	5
24	Selective recovery of histidine-containing dipeptides based on metal affinity interactions using chemically modified dextran in combination with ultrafiltration. Reactive and Functional Polymers, 2010, 70, 103-109.	4.1	3
25	Improvements in the water dispersibility of paclitaxel by complexing with synthetic peptides derived from \hat{l}^2 -casein. Colloids and Surfaces B: Biointerfaces, 2018, 167, 144-149.	5.0	3
26	Enhanced water dispersibility and Cacoâ€⊋ cell monolayer permeability of quercetin by complexation with casein hydrolysate. Journal of Food Science, 2022, 87, 1174-1183.	3.1	2
27	Dominant structural factors for complexation and denaturation of proteins using carboxylic acid receptors. Analytica Chimica Acta, 2012, 710, 102-110.	5.4	1
28	Dominant factors that determine the dissolution state of complexes between poorly water-soluble ingredients and casein hydrolysate. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112062.	5.0	1