Hector F Deluca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9061690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of general physiologic features and functions of vitamin D. American Journal of Clinical Nutrition, 2004, 80, 1689S-1696S.	2.2	1,764
2	Current Understanding of the Molecular Actions of Vitamin D. Physiological Reviews, 1998, 78, 1193-1231.	13.1	1,122
3	Intestinal Calcium Absorption and Serum Vitamin D Metabolites in Normal Subjects and Osteoporotic Patients. Journal of Clinical Investigation, 1979, 64, 729-736.	3.9	804
4	Vitamin D: its role and uses in immunology1. FASEB Journal, 2001, 15, 2579-2585.	0.2	720
5	Expression of 1,25-Dihydroxyvitamin D3 Receptor in the Immune System. Archives of Biochemistry and Biophysics, 2000, 374, 334-338.	1.4	615
6	A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Archives of Biochemistry and Biophysics, 1976, 176, 235-243.	1.4	538
7	The vitamin D story: a collaborative effort of basic science and clinical medicine ¹ . FASEB Journal, 1988, 2, 224-236.	0.2	495
8	Where is the vitamin D receptor?. Archives of Biochemistry and Biophysics, 2012, 523, 123-133.	1.4	468
9	Pathogenesis of Hereditary Vitamin-D-Dependent Rickets. New England Journal of Medicine, 1973, 289, 817-822.	13.9	412
10	Vitamin D, disease and therapeutic opportunities. Nature Reviews Drug Discovery, 2010, 9, 941-955.	21.5	378
11	1,25-Dihydroxycholecalciferol Inhibits the Progression of Arthritis in Murine Models of Human Arthritis ,. Journal of Nutrition, 1998, 128, 68-72.	1.3	340
12	Vitamin-D-Dependent Rickets Type II. New England Journal of Medicine, 1978, 298, 996-999.	13.9	323
13	Biologically active metabolite of vitamin D3 from bone, liver, and blood serum. Journal of Lipid Research, 1966, 7, 739-744.	2.0	288
14	25-Hydroxycholecalciferol-1-hydroxylase. Journal of Biological Chemistry, 1972, 247, 7528-7532.	1.6	262
15	CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15650-15655.	3.3	258
16	Cloning of the human 1α,25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1263, 1-9.	2.4	257
17	Serum 1,25-Dihydroxyvitamin D Levels in Normal Subjects and in Patients with Hereditary Rickets or Bone Disease. New England Journal of Medicine, 1978, 299, 976-979.	13.9	232
18	Is the Vitamin D Receptor Found in Muscle?. Endocrinology, 2011, 152, 354-363.	1.4	228

#	Article	IF	CITATIONS
19	Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. British Journal of Clinical Pharmacology, 2018, 84, 2194-2207.	1.1	211
20	Evolution of our understanding of vitamin D. Nutrition Reviews, 2008, 66, S73-S87.	2.6	205
21	In vitro production of 25-hydroxycholecalciferol. Biochemical and Biophysical Research Communications, 1969, 36, 251-256.	1.0	204
22	25-Hydroxyvitamin D3-24-hydroxylase. Subcellular location and properties. Biochemistry, 1974, 13, 1543-1548.	1.2	194
23	Effect of Vitamin D Deficiency on Fertility and Reproductive Capacity in the Female Rat. Journal of Nutrition, 1980, 110, 1573-1580.	1.3	193
24	A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. American Journal of Kidney Diseases, 1995, 26, 852-860.	2.1	193
25	THE RELATIONSHIP BETWEEN VITAMIN D AND PARATHYROID HORMONE*. Journal of Clinical Investigation, 1963, 42, 1940-1946.	3.9	191
26	Human 25-Hydroxyvitamin D3-24-Hydroxylase, a Multicatalytic Enzymeâ€. Biochemistry, 1996, 35, 8465-8472.	1.2	188
27	UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6418-6423.	3.3	187
28	Molecular Structure of the Rat Vitamin D Receptor Ligand Binding Domain Complexed with 2-Carbon-Substituted Vitamin D3 Hormone Analogues and a LXXLL-Containing Coactivator Peptide,. Biochemistry, 2004, 43, 4101-4110.	1.2	179
29	Two Vitamin D Response Elements Function in the Rat 1,25-Dihydroxyvitamin D 24-Hydroxylase Promoter. Journal of Biological Chemistry, 1995, 270, 1675-1678.	1.6	178
30	Vitamin D Homeostasis in the Perinatal Period. New England Journal of Medicine, 1980, 302, 315-319.	13.9	177
31	Cellular Mechanisms of Insulin Release: The Effects of Vitamin D Deficiency and Repletion on Rat Insulin Secretion*. Endocrinology, 1983, 113, 1511-1518.	1.4	175
32	Role of Vitamin D Metabolites in Phosphate Transport of Rat Intestine. Journal of Nutrition, 1974, 104, 1056-1060.	1.3	174
33	The Synthesis of [1,2-3H] Vitamin D3 and the Tissue Localization of a 0.25-μg (10 IU) Dose per Rat*. Biochemistry, 1966, 5, 2201-2207.	1.2	173
34	A potent analog of 1Â,25-dihydroxyvitamin D3 selectively induces bone formation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13487-13491.	3.3	173
35	Molecular Cloning of cDNA and Genomic DNA for Human 25-hydroxyvitamin D31α-hydroxylase. Biochemical and Biophysical Research Communications, 1997, 239, 527-533.	1.0	172
36	History of the discovery of vitamin D and its active metabolites. BoneKEy Reports, 2014, 3, 479.	2.7	170

#	Article	IF	CITATIONS
37	The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Archives of Biochemistry and Biophysics, 1975, 171, 521-526.	1.4	168
38	Rickets with alopecia: An inborn error of vitaminD metabolism. Journal of Pediatrics, 1979, 94, 729-735.	0.9	166
39	Metabolism of Vitamin D3-3H in Human Subjects: Distribution in Blood, Bile, Feces, and Urine*. Journal of Clinical Investigation, 1967, 46, 983-992.	3.9	164
40	The Regulation of Rat Liver Calciferol-25-hydroxylase. Journal of Biological Chemistry, 1973, 248, 2969-2973.	1.6	163
41	Oral administration of 1,25-dihydroxyvitamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Archives of Biochemistry and Biophysics, 2003, 417, 77-80.	1.4	159
42	Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Archives of Biochemistry and Biophysics, 1976, 176, 779-787.	1.4	158
43	1α,25-dihydroxy-19-nor-vitamin D3, a novel vitamin D-related compound with potential therapeutic activity. Tetrahedron Letters, 1990, 31, 1823-1824.	0.7	158
44	Mechanism of Action and Metabolic Fate of Vitamin D. Vitamins and Hormones, 1967, 25, 315-367.	0.7	157
45	Evidence That 1,25-Dihydroxyvitamin D ₃ Is the Physiologically Active Metabolite of Vitamin D ₃ *. Endocrine Reviews, 1985, 6, 491-511.	8.9	157
46	New 1α,25-Dihydroxy-19-norvitamin D3Compounds of High Biological Activity: Synthesis and Biological Evaluation of 2-Hydroxymethyl, 2-Methyl, and 2-Methylene Analogues. Journal of Medicinal Chemistry, 1998, 41, 4662-4674.	2.9	157
47	Absence of Seasonal Variation in Serum Concentrations of 1,25-Dihydroxyvitamin D Despite a Rise in 25-Hydroxyvitamin D in Summer*. Journal of Clinical Endocrinology and Metabolism, 1981, 53, 139-142.	1.8	151
48	Mechanisms and Functions of Vitamin D. Nutrition Reviews, 1998, 56, S4-S10.	2.6	150
49	Regulation of 25-Hydroxyvitamin D3 $1\hat{l}\pm$ -Hydroxylase Gene Expression by Parathyroid Hormone and 1,25-Dihydroxyvitamin D3. Archives of Biochemistry and Biophysics, 2000, 381, 143-152.	1.4	145
50	Plasma concentrations of vitamin D3 and its metabolites in the rat as influenced by vitamin D3 or 25-hydroxyvitamin D3 intakes. Archives of Biochemistry and Biophysics, 1980, 202, 43-53.	1.4	135
51	Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Archives of Biochemistry and Biophysics, 2004, 432, 152-166.	1.4	133
52	21,25-Dihydroxycholecalciferol. A metabolite of vitamin D3 preferentially active on bone. Biochemistry, 1970, 9, 2917-2922.	1.2	132
53	Vitamin D Receptor Null Mutant Mice Fed High Levels of Calcium Are Fertile. Journal of Nutrition, 2001, 131, 1787-1791.	1.3	131
54	Monoclonal antibodies to the porcine intestinal receptor for 1,25-dihydroxyvitamin D3: interaction with distinct receptor domains. Biochemistry, 1986, 25, 4523-4534.	1.2	128

#	Article	IF	CITATIONS
55	1α-Hydroxylated Cholecalciferol Compounds Act Additively with Microbial Phytase to Improve Phosphorus, Zinc and Manganese Utilization in Chicks Fed Soy-Based Diets1. Journal of Nutrition, 1995, 125, 2407-2416.	1.3	125
56	Isolation and characterization of 1.alphahydroxy-23-carboxytetranorvitamin D: a major metabolite of 1,25-dihydroxyvitamin D3. Biochemistry, 1979, 18, 3977-3983.	1.2	124
57	Dietary Calcium Is a Major Factor in 1,25-Dihydroxycholecalciferol Suppression of Experimental Autoimmune Encephalomyelitis in Mice. Journal of Nutrition, 1999, 129, 1966-1971.	1.3	123
58	The Preparation of H3-Vitamins D2 and D3 and Their Localization in the Rat*. Biochemistry, 1963, 2, 1160-1168.	1.2	122
59	Vitamin D and autoimmune diabetes. Journal of Cellular Biochemistry, 2003, 88, 216-222.	1.2	122
60	The synthesis of 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochemistry, 1969, 8, 671-675.	1.2	114
61	Vitamin A Antagonizes the Action of Vitamin D in Rats. Journal of Nutrition, 1999, 129, 2246-2250.	1.3	114
62	Isolation and identification of 1,25-dihydroxyvitamin D2. Biochemistry, 1975, 14, 1250-1256.	1.2	113
63	Calcium transport and the role of vitamin D. Archives of Biochemistry and Biophysics, 1969, 134, 139-148.	1.4	110
64	26,26,26,27,27,27-Hexafluoro-1,25-dihydroxyvitamin D3: A highly potent, long-lasting analog of 1,25-dihydroxyvitamin D3. Archives of Biochemistry and Biophysics, 1984, 229, 348-354.	1.4	110
65	The vitamin D receptor is necessary for 1α,25-dihydroxyvitamin D3 to suppress experimental autoimmune encephalomyelitis in mice. Archives of Biochemistry and Biophysics, 2002, 408, 200-204.	1.4	110
66	PROLONGATION OF ALLOGRAFT SURVIVAL BY 1,25-DIHYDROXYVITAMIN D31. Transplantation, 1998, 66, 824-828.	0.5	107
67	Regulation of 25-hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxyvitamin D3and parathyroid hormone. Journal of Cellular Biochemistry, 2003, 88, 234-237.	1.2	106
68	Novel synthesis of 19-nor-vitamin D compounds. Tetrahedron Letters, 1991, 32, 7663-7666.	0.7	103
69	Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Archives of Biochemistry and Biophysics, 2010, 500, 157-161.	1.4	102
70	Tissue distribution of the 1,25-dihydroxyvitamin D3 receptor in the male rat. Biochemical and Biophysical Research Communications, 1991, 181, 611-616.	1.0	96
71	Intestinal 1,25-dihydroxyvitamin D3 binding protein: Specificity of binding. Steroids, 1977, 30, 245-257.	0.8	94
72	Isolation and identification of 25-hydroxyergocalciferol. Biochemistry, 1969, 8, 3515-3520.	1.2	93

#	Article	IF	CITATIONS
73	Minireview: Vitamin D: Is There a Role in Extraskeletal Health?. Endocrinology, 2011, 152, 2930-2936.	1.4	92
74	TRPV6 is not required for 1α,25-dihydroxyvitamin D ₃ -induced intestinal calcium absorption in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19655-19659.	3.3	90
75	1,25-Dihydroxyvitamin D is not responsible for toxicity caused by vitamin D or 25-hydroxyvitamin D. Archives of Biochemistry and Biophysics, 2011, 505, 226-230.	1.4	90
76	The influence of dietary calcium and phosphorus on intestinal calcium transport in rats given vitamin D metabolites. Archives of Biochemistry and Biophysics, 1975, 170, 529-535.	1.4	89
77	Assessment of 25-Hydroxyvitamin D lα-Hydroxylase Reserve in Postmenopausal Osteoporosis by Administration of Parathyroid Extract. Journal of Clinical Endocrinology and Metabolism, 1981, 53, 833-835.	1.8	88
78	1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components. Journal of Biological Chemistry, 2015, 290, 18199-18215.	1.6	87
79	Biologically active forms of vitamin D3 in kidney and intestine. Archives of Biochemistry and Biophysics, 1964, 108, 12-21.	1.4	86
80	Vitamin D. Vitamins and Hormones, 2016, 100, 1-20.	0.7	86
81	Intestinal Calcium Absorption in the Aged Rat: Evidence of Intestinal Resistance to 1,25(OH)2 Vitamin D*. Endocrinology, 1998, 139, 3843-3848.	1.4	84
82	In Vivo Upregulation of Interleukin-4 Is One Mechanism Underlying the Immunoregulatory Effects of 1,25-Dihydroxyvitamin D3. Archives of Biochemistry and Biophysics, 2000, 377, 135-138.	1.4	84
83	2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 Potently Stimulates Gene-specific DNA Binding of the Vitamin D Receptor in Osteoblasts. Journal of Biological Chemistry, 2003, 278, 31756-31765.	1.6	84
84	Calbindin D9k knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12377-12381.	3.3	83
85	Response to Crystalline 1α-Hydroxyvitamin D3 in Vitamin D Dependency. Pediatric Research, 1975, 9, 593-599.	1.1	80
86	Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine. Archives of Biochemistry and Biophysics, 2007, 460, 227-232.	1.4	80
87	1,25-DIHYDROXYVITAMIN D3 PROLONGS GRAFT SURVIVAL WITHOUT COMPROMISING HOST RESISTANCE TO INFECTION OR BONE MINERAL DENSITY1. Transplantation, 1998, 66, 828-831.	0.5	79
88	Synthesis, Biological Evaluation, and Conformational Analysis of A-Ring Diastereomers of 2-Methyl-1,25-dihydroxyvitamin D3 and Their 20-Epimers:  Unique Activity Profiles Depending on the Stereochemistry of the A-Ring and at C-20. Journal of Medicinal Chemistry, 2000, 43, 4247-4265.	2.9	78
89	Direct chemical synthesis of 1.alpha.,25-dihydroxy[26,27-3H]vitamin D3 with high specific activity: its use in receptor studies. Biochemistry, 1980, 19, 2515-2521.	1.2	77
90	Association Between Intestinal Vitamin D Receptor, Calcium Absorption, and Serum 1,25 Dihydroxyvitamin D in Normal Young and Elderly Women. Journal of Bone and Mineral Research, 1997, 12, 922-928.	3.1	75

#	Article	IF	CITATIONS
91	CYP27B1 null mice with LacZreporter gene display no 25-hydroxyvitamin D3-1Â-hydroxylase promoter activity in the skin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 75-80.	3.3	75
92	Identification of a highly specific and versatile vitamin D receptor antibody. Archives of Biochemistry and Biophysics, 2010, 494, 166-177.	1.4	74
93	2-Ethyl and 2-Ethylidene Analogues of 1α,25-Dihydroxy-19-norvitamin D3: Synthesis, Conformational Analysis, Biological Activities, and Docking to the Modeled rVDR Ligand Binding Domain. Journal of Medicinal Chemistry, 2002, 45, 3366-3380.	2.9	70
94	Citrate and action of vitamin D on calcium and phosphorus metabolism. American Journal of Physiology, 1963, 204, 833-836.	5.0	69
95	Conformationally Restricted Analogs of 11±,25-Dihydroxyvitamin D3and Its 20-Epimer:Â Compounds for Study of the Three-Dimensional Structure of Vitamin D Responsible for Binding to the Receptor. Journal of Medicinal Chemistry, 1996, 39, 2727-2737.	2.9	69
96	Retinoic acid is detected at relatively high levels in the CNS of adult rats. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E672-E678.	1.8	68
97	Isolation and characterization of unsaturated fatty acids as natural ligands for the retinoid-X receptor. Archives of Biochemistry and Biophysics, 2003, 420, 185-193.	1.4	67
98	Metabolism of 25-hydroxycholecalciferol in target and nontarget tissues. Biochemistry, 1970, 9, 3649-3652.	1.2	66
99	Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell and Tissue Research, 1980, 209, 161-6.	1.5	66
100	Vitamin D Compounds in Cows' Milk. Journal of Nutrition, 1982, 112, 667-672.	1.3	66
101	Spleen serves as a reservoir of osteoclast precursors through vitamin D-induced IL-34 expression in osteopetrotic <i>op/op</i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10006-10011.	3.3	66
102	Synergistic Effect of Progesterone, Testosterone, and Estradiol in the Stimulation of Chick Renal 25- Hydroxyvitamin D ₃ -ll̂±-Hydroxylase*. Endocrinology, 1978, 103, 2035-2039.	1.4	65
103	Crystal Structures of Rat Vitamin D Receptor Bound to Adamantyl Vitamin D Analogs: Structural Basis for Vitamin D Receptor Antagonism and Partial Agonism. Journal of Medicinal Chemistry, 2008, 51, 5320-5329.	2.9	65
104	Regulation of the Porcine 1,25-Dihydroxyvitamin D3-24-Hydroxylase (CYP24) by 1,25-Dihydroxyvitamin D3 and Parathyroid Hormone in AOK-B50 Cells. Archives of Biochemistry and Biophysics, 2000, 381, 323-327.	1.4	61
105	Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9733-9737.	3.3	61
106	New 2-Alkylidene 1α,25-Dihydroxy-19-norvitamin D3 Analogues of High Intestinal Activity:  Synthesis and Biological Evaluation of 2-(3â€~-Alkoxypropylidene) and 2-(3â€~-Hydroxypropylidene) Derivatives. Journal of Medicinal Chemistry, 2006, 49, 2909-2920.	2.9	61
107	Effects of increasing doses of 1α-hydroxyvitamin D2 on calcium homeostasis in postmenopausal osteopenic women. Journal of Bone and Mineral Research, 1994, 9, 607-614.	3.1	60
108	Direct C(1) hydroxylation of vitamin D3 and related compounds. Journal of Organic Chemistry, 1980, 45, 3253-3258.	1.7	58

#	Article	IF	CITATIONS
109	Synthesis and Biological Activity of 2-Hydroxy and 2-Alkoxy Analogs of 1.alpha.,25-Dihydroxy-19-norvitamin D3. Journal of Medicinal Chemistry, 1994, 37, 3730-3738.	2.9	57
110	Development of experimental autoimmune encephalomyelitis (EAE) in mice requires vitamin D and the vitamin D receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8501-8504.	3.3	57
111	Biologically active noncalcemic analogs of 1Â,25-dihydroxyvitamin D with an abbreviated side chain containing no hydroxyl. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6900-6904.	3.3	56
112	Stimulation of Lead Absorption by Vitamin D Administration. Journal of Nutrition, 1978, 108, 843-847.	1.3	55
113	1α,25-dihydroxyvitamin D3 a nd 19-nor-1α,25-dihydroxyvitamin 32 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochimica Et Biophysica Acta - General Subjects, 1993, 1158, 279-286.	1.1	55
114	Identification of the Vitamin D Receptor in Osteoblasts and Chondrocytes But Not Osteoclasts in Mouse Bone. Journal of Bone and Mineral Research, 2014, 29, 685-692.	3.1	55
115	The Regulation of 24,25-Dihydroxyvitamin D3 Production in Cultures of Monkey Kidney Cells1 ¹ . Endocrinology, 1977, 101, 1184-1193.	1.4	54
116	1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicology and Applied Pharmacology, 2007, 218, 37-44.	1.3	54
117	CD8+ T cells are not necessary for 1Â,25-dihydroxyvitamin D3 to suppress experimental autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5557-5560.	3.3	53
118	Interaction between Vitamin D Receptor and Vitamin D Ligands. Chemistry and Biology, 2003, 10, 261-270.	6.2	51
119	Vitamin D and calcium metabolism. , 1979, 83, 1-65.		50
120	Molecular Biology of Vitamin D Action. Vitamins and Hormones, 1994, 49, 281-326.	0.7	50
121	Analysis of Binding of the 1,25-Dihydroxyvitamin D3Receptor to Positive and Negative Vitamin D Response Elements. Archives of Biochemistry and Biophysics, 1996, 334, 223-234.	1.4	49
122	Mechanism of action of superactive vitamin D analogs through regulated receptor degradation. Journal of Cellular Biochemistry, 2000, 76, 548-558.	1.2	49
123	A Bioassay Capable of Measuring 1 Picogram of 1,25-Dihydroxyvitamin D ₃ *. Journal of Clinical Endocrinology and Metabolism, 1978, 46, 891-896.	1.8	48
124	Identification of the vitamin D receptor in various cells of the mouse kidney. Kidney International, 2012, 81, 993-1001.	2.6	48
125	The vitamin $D\hat{a}\in$ "induced differentiation of HL-60 cells: Structural requirements. Steroids, 1987, 49, 73-102.	0.8	47
126	Recent Advances in the Molecular Biology of Vitamin D Action. Progress in Molecular Biology and Translational Science, 1996, 53, 321-344.	1.9	46

#	Article	IF	CITATIONS
127	A Highly Sensitive Method for Large-Scale Measurements of 1,25-Dihydroxyvitamin D. Analytical Biochemistry, 1998, 255, 148-154.	1.1	46
128	Ligand-Specific Structural Changes in the Vitamin D Receptor in Solution. Biochemistry, 2011, 50, 11025-11033.	1.2	45
129	Retinol in Addition to Retinoic Acid is Required for Successful Gestation in Vitamin A-Deficient Rats1. Biology of Reproduction, 1995, 53, 1392-1397.	1.2	44
130	Research Communication: Reproductive Defects Are Corrected in Vitamin D–Deficient Female Rats Fed a High Calcium, Phosphorus and Lactose Diet. Journal of Nutrition, 2002, 132, 2270-2273.	1.3	44
131	Vitamin D deficiency diminishes the severity and delays onset of experimental autoimmune encephalomyelitis. Archives of Biochemistry and Biophysics, 2011, 513, 140-143.	1.4	44
132	Effect of Lead Ingestion on Functions of Vitamin D and its Metabolites. Journal of Nutrition, 1981, 111, 1321-1329.	1.3	43
133	Stereoselective syntheses of (22R)- and (22S)-22-methyl-1.alpha.,25-dihydroxyvitamin D3: active vitamin D3 analogs with restricted side-chain conformation. Journal of Organic Chemistry, 1993, 58, 2530-2537.	1.7	43
134	1α,25-Dihydroxyvitamin D3 and its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 (2MD), suppress intraocular pressure in non-human primates. Archives of Biochemistry and Biophysics, 2012, 518, 53-60.	1.4	43
135	Synthesis of 25-hydroxy[26,27-3H]vitamin D3 with high specific activity. Analytical Biochemistry, 1979, 96, 481-488.	1.1	42
136	1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization. Archives of Biochemistry and Biophysics, 2005, 433, 466-473.	1.4	42
137	Characterization of intestinal phosphate absorption using a novel in vivo method. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1917-E1921.	1.8	42
138	17alpha;-Hydroxy-25-fluorovitamin D3: a potent analog of 1α,25-dihydroxyvitamin D3. Biochemistry, 1978, 17, 2387-2392.	1.2	41
139	A New Vitamin D Analog, 2MD, Restores Trabecular and Cortical Bone Mass and Strength in Ovariectomized Rats With Established Osteopenia. Journal of Bone and Mineral Research, 2005, 20, 1742-1755.	3.1	41
140	Nuclear receptor 4A2 and C/EBPβ regulate the parathyroid hormone-mediated transcriptional regulation of the 25-hydroxyvitamin D3-1α-hydroxylase. Archives of Biochemistry and Biophysics, 2007, 460, 233-239.	1.4	41
141	Cloning and Origin of the Two Forms of Chicken Vitamin D Receptor. Archives of Biochemistry and Biophysics, 1997, 339, 99-106.	1.4	40
142	Metabolites of 1.alpha.,25-dihydroxyvitamin D3 in rat bile. Biochemistry, 1980, 19, 4124-4130.	1.2	38
143	Synthesis and Biological Activity of 1α,25-Dihydroxy-18-norvitamin D3and 1α,25-Dihydroxy-18,19-dinorvitamin D3. Journal of Medicinal Chemistry, 1996, 39, 4497-4506.	2.9	38
144	Bone Resorption Activity of All-trans Retinoic Acid Is Independent of Vitamin D in Rats. Journal of Nutrition, 2003, 133, 777-783.	1.3	37

#	Article	IF	CITATIONS
145	VITAMIN D METABOLISM. Clinical Endocrinology, 1977, 7, 1s-17s.	1.2	36
146	On the Physiological Basis of Vitamin A-Stimulated Growth. Journal of Nutrition, 1979, 109, 1787-1796.	1.3	36
147	A New Vaginal Smear Assay for Vitamin A in Rats. Journal of Nutrition, 1982, 112, 1481-1489.	1.3	36
148	Salt Concentration Determines 1,25-Dihydroxyvitamin D3Dependency of Vitamin D Receptor–Retinoid X Receptor–Vitamin D-Responsive Element Complex Formation. Archives of Biochemistry and Biophysics, 1997, 341, 75-80.	1.4	35
149	Identification of a highly potent vitamin D receptor antagonist: (25S)-26-Adamantyl-25-hydroxy-2-methylene-22,23-didehydro-19,27-dinor-20-epi-vitamin D3 (ADMI3). Archives of Biochemistry and Biophysics, 2007, 460, 240-253.	1.4	35
150	The vitamin D receptor in the proximal renal tubule is a key regulator of serum 1α,25-dihydroxyvitamin D ₃ . American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E201-E205.	1.8	35
151	Parathyroid hormone decreases renal vitamin D receptor expression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4724-4728.	3.3	34
152	2MD, a new anabolic agent for osteoporosis treatment. Osteoporosis International, 2006, 17, 704-715.	1.3	34
153	New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: Evaluation of biological activity and structural determination of VDR-bound conformations. Archives of Biochemistry and Biophysics, 2007, 460, 161-165.	1.4	34
154	Suppression of experimental autoimmune encephalomyelitis by 300–315 nm ultraviolet light. Archives of Biochemistry and Biophysics, 2013, 536, 81-86.	1.4	34
155	All-trans Retinoic Acid Antagonizes the Action of Calciferol and Its Active Metabolite, 1,25-Dihydroxycholecalciferol, in Rats. Journal of Nutrition, 2005, 135, 1647-1652.	1.3	33
156	New 19-nor-(20S)-1α,25-dihydroxyvitamin D3 analogs strongly stimulate osteoclast formation both in vitro. Bone, 2007, 40, 293-304.	1.4	33
157	Formation of vitamin D esters in vivo. Archives of Biochemistry and Biophysics, 1967, 120, 513-517.	1.4	32
158	Intestinal calcium transport: Parathyroid hormone and adaptation to dietary calcium. Archives of Biochemistry and Biophysics, 1976, 175, 256-261.	1.4	31
159	Enhancement of 1,25-dihydroxyvitamin D ₃ -mediated suppression of experimental autoimmune encephalomyelitis by calcitonin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5276-5281.	3.3	31
160	The Functional Metabolism and Molecular Biology of Vitamin D Action. Clinical Reviews in Bone and Mineral Metabolism, 2009, 7, 20-41.	1.3	31
161	The vitamin D analogue 2MD increases bone turnover but not BMD in postmenopausal women with osteopenia: Results of a 1-year phase 2 double-blind, placebo-controlled, randomized clinical trial. Journal of Bone and Mineral Research, 2011, 26, 538-545.	3.1	31
162	Metabolism of a Physiological Amount of all-trans-Retinol in the Vitamin A-Deficient Rat. Archives of Biochemistry and Biophysics, 2001, 393, 262-270.	1.4	30

#	Article	IF	CITATIONS
163	Synthesis and biological activity of 1.ALPHAfluoro-25-hydroxyvitamin D3 Chemical and Pharmaceutical Bulletin, 1984, 32, 3525-3531.	0.6	29
164	Three-dimensional structure-function relationship of vitamin D: Side chain location and various activities. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1041-1046.	1.0	29
165	Metabolism of 1α,25-Dihydroxyvitamin D3 in Vitamin D Receptor-Ablated Mice in Vivo. Biochemistry, 2000, 39, 2123-2129.	1.2	29
166	Hypercalcemia produced by parathyroid hormone suppresses experimental autoimmune encephalomyelitis in female but not male mice. Archives of Biochemistry and Biophysics, 2005, 442, 214-221.	1.4	29
167	DNA Labeling of Rat Epithelial Tissues in Vitamin A Deficiency. Journal of Nutrition, 1981, 111, 777-788.	1.3	27
168	The Mouse Vitamin D Receptor Is Mainly Expressed through an Sp1-Driven Promoter in Vivo. Archives of Biochemistry and Biophysics, 2000, 377, 273-283.	1.4	27
169	Regulation of renal vitamin D receptor is an important determinant of 1α,25-dihydroxyvitamin D3 levels in vivo. Archives of Biochemistry and Biophysics, 2002, 401, 44-52.	1.4	27
170	The necessity for calcium for increased renal vitamin D receptor in response to 1,25-dihydroxyvitamin D. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1176, 321-326.	1.9	26
171	Synthesis and biological activities of vitamin D-like inhibitors of CYP24 hydroxylase. Steroids, 2012, 77, 212-223.	0.8	26
172	A novel, fully-automated, chemiluminescent assay for the detection of 1,25-dihydroxyvitamin D in biological samples. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 120-126.	1.2	26
173	Crystal structure of 25-hydroxy-vitamin D3 monohydrate: a stereochemical analysis of vitamin D molecules. Journal of the Chemical Society Perkin Transactions II, 1977, , 393.	0.9	24
174	UV light selectively inhibits spinal cord inflammation and demyelination in experimental autoimmune encephalomyelitis. Archives of Biochemistry and Biophysics, 2015, 567, 75-82.	1.4	24
175	THE METABOLISM OF [6- ³ H]1α, HYDROXYCHOLECALCIFEROL TO [6- ³ H]1α, 25-DIHYDROXYCHOLECALCIFEROL IN A PATIENT WITH RENAL INSUFFICIENCY. Journal of Clinical Endocrinology and Metabolism, 1977, 44, 595-598.	1.8	23
176	[46] Determination of vitamin D and its metabolites in plasma. Methods in Enzymology, 1980, 67, 393-413.	0.4	23
177	Removal of the 20-methyl group from 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 (2MD) selectively eliminates bone calcium mobilization activity. Bioorganic and Medicinal Chemistry, 2009, 17, 7658-7669.	1.4	23
178	Vitamin D binding protein is required to utilize skin-generated vitamin D. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24527-24532.	3.3	23
179	Functional Interference Between AP-1 and the Vitamin D Receptor on Osteocalcin Gene Expression in Human Osteosarcoma Cells. FEBS Journal, 1994, 224, 11-20.	0.2	22
180	An enzyme-linked immunoassay for the 1,25-dihydroxyvitamin D3 receptor protein. Journal of Bone and Mineral Research, 1996, 11, 1921-1925.	3.1	22

#	Article	IF	CITATIONS
181	RECENT ADVANCES IN OUR UNDERSTANDING OF THE METABOLISM OF VITAMIN D AND ITS REGULATION. Clinical Endocrinology, 1976, 5, s97-s108.	1.2	21
182	Synthesis and biological properties of 2-methylene-19-nor-25-dehydro-1α-hydroxyvitamin D3-26,23-lactones—weak agonists. Bioorganic and Medicinal Chemistry, 2008, 16, 8563-8573.	1.4	21
183	Vitamin D and the Parenteral Nutrition Patient. Gastroenterology, 2009, 137, S79-S91.	0.6	21
184	Chapter 18. Vitamin D: Metabolism and Mechanism of Action. Annual Reports in Medicinal Chemistry, 1984, 19, 179-190.	0.5	20
185	On the side chain conformation of $1\hat{l}$ ±,25-dihydroxyvitamin D3 responsible for binding to the receptor. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 979-984.	1.0	20
186	Immunoreactivity of six monoclonal antibodies directed against 1,25-dihydroxyvitamin-D3 receptors in human skin. The Histochemical Journal, 2000, 32, 625-629.	0.6	20
187	Model of three-dimensional structure of vitamin D receptor and its binding mechanism with 1?,25-dihydroxyvitamin D3. Proteins: Structure, Function and Bioinformatics, 2001, 44, 188-199.	1.5	20
188	Design, Synthesis, and Biological Evaluation of a 1α,25-Dihydroxy-19-norvitamin D3Analogue with a Frozen A-Ring Conformation. Journal of Medicinal Chemistry, 2007, 50, 6154-6164.	2.9	20
189	Biological activities and binding properties of 23,23-difluoro-25-hydroxyvitamin D3 and its 1α-hydroxy derivative. Archives of Biochemistry and Biophysics, 1985, 241, 173-178.	1.4	19
190	Synthesis and biological activity of 22-iodo- and (E)-20(22)-dehydro analogues of 11±,25-dihydroxyvitamin D 3. Bioorganic and Medicinal Chemistry, 1999, 7, 2877-2889.	1.4	19
191	Selective analogs of 1α,25-dihydroxyvitamin D3 for the study of specific functions of Vitamin D. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 263-268.	1.2	19
192	22-Alkyl-20-epi-1α,25-dihydroxyvitamin D3Compounds of Superagonistic Activity: Syntheses, Biological Activities and Interaction with the Receptor. Journal of Medicinal Chemistry, 2007, 50, 932-939.	2.9	19
193	UV light suppression of EAE (a mouse model of multiple sclerosis) is independent of vitamin D and its receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22552-22555.	3.3	19
194	Methyl substitution of the 25-hydroxy group on 2-methylene-19-nor-1α,25-dihydroxyvitamin D3 (2MD) reduces potency but allows bone selectivity. Archives of Biochemistry and Biophysics, 2007, 460, 274-284.	1.4	18
195	Synthesis of calcitroic acid, a metabolite of 1.alpha.,25-dihydroxycholecalciferol. Journal of Organic Chemistry, 1981, 46, 456-458.	1.7	17
196	NMR assignments of tryptophan residue in apo and holo LBD-rVDR. Proteins: Structure, Function and Bioinformatics, 2005, 61, 461-467.	1.5	17
197	Removal of the 26-Methyl Group from 19-nor-1α,25-Dihydroxyvitamin D3Markedly Reduces in Vivo Calcemic Activity without Altering in Vitro VDR Binding, HL-60 Cell Differentiation, and Transcription. Journal of Medicinal Chemistry, 2010, 53, 8642-8649.	2.9	17
198	Small-Molecule Inhibitors of 25-Hydroxyvitamin D-24-Hydroxylase (CYP24A1): Synthesis and Biological Evaluation. Journal of Medicinal Chemistry, 2014, 57, 7702-7715.	2.9	17

#	Article	IF	CITATIONS
199	Effect of Egg White Diets on Calcium Metabolism in the Rat. Journal of Nutrition, 1963, 81, 218-222.	1.3	16
200	New 1α,25-Dihydroxy-19-norvitamin D ₃ Compounds Constrained in a Single A-Ring Conformation: Synthesis of the Analogues by Ring-Closing Metathesis Route and Their Biological Evaluation. Journal of Medicinal Chemistry, 2009, 52, 3496-3504.	2.9	16
201	The biochemical basis of renal osteodystrophy and post-menopausal osteoporosis: a view from the vitamin D system. Current Medical Research and Opinion, 1981, 7, 279-293.	0.9	15
202	Synthesis of some side-chain homologues of 1.ALPHA.,25-dihydroxyvitamin D3 and investigation of their biological activities Chemical and Pharmaceutical Bulletin, 1986, 34, 4508-4515.	0.6	15
203	Identification of a Transcription Factor That Binds to the Promoter Region of the Human Parathyroid Hormone Gene. Archives of Biochemistry and Biophysics, 1999, 365, 123-130.	1.4	15
204	Responsiveness of human retinoblastoma and neuroblastoma models to a non-calcemic 19-nor Vitamin D analog. Journal of Steroid Biochemistry and Molecular Biology, 2005, 97, 165-172.	1.2	15
205	Identification of a Unique Subset of 2-Methylene-19-Nor Analogs of Vitamin D with Comedolytic Activity in the Rhino Mouse. Journal of Investigative Dermatology, 2010, 130, 2359-2367.	0.3	15
206	Screening of Selective Inhibitors of 1α,25-Dihydroxyvitamin D ₃ 24-Hydroxylase Using Recombinant Human Enzyme Expressed in <i>Escherichia coli</i> . Biochemistry, 2010, 49, 10403-10411.	1.2	15
207	DNA bending is induced by binding of vitamin D receptor-retinoid X receptor heterodimers to vitamin D response elements. , 1999, 74, 220-228.		14
208	Bacterial Expression and Characterization of the Ligand-Binding Domain of the Vitamin D Receptor. Archives of Biochemistry and Biophysics, 1999, 364, 42-52.	1.4	14
209	Effect of 2-Methylene-19-nor-(20S)-1α-Hydroxy-Bishomopregnacalciferol (2MbisP), an Analog of Vitamin D, on Secondary Hyperparathyroidism. Journal of Bone and Mineral Research, 2007, 22, 686-694.	3.1	14
210	13-Methyl-substituted des-C,D analogs of (20S)-1α,25-dihydroxy-2-methylene-19-norvitamin D3 (2MD): Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2009, 17, 1747-1763.	1.4	14
211	1-Desoxy analog of 2MD: Synthesis and biological activity of (20S)-25-hydroxy-2-methylene-19-norvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 51-55.	1.2	14
212	The Importance of Stereochemistry on the Actions of Vitamin D. Current Topics in Medicinal Chemistry, 2011, 11, 840-859.	1.0	14
213	Cholecalciferol or 25-Hydroxycholecalciferol Neither Prevents Nor Treats Adenomas in a Rat Model of Familial Colon Cancer. Journal of Nutrition, 2015, 145, 291-298.	1.3	14
214	Vitamin D deficiency independent of hypocalcemia elevates blood pressure in rats. Biochemical and Biophysical Research Communications, 2015, 461, 589-591.	1.0	14
215	Modern View of Vitamin D3 and its Medicinal Uses. Progress in Medicinal Chemistry, 1998, 35, 1-56.	4.1	13
216	Novel, Selective Vitamin D Analog Suppresses Parathyroid Hormone in Uremic Animals and Postmenopausal Women. American Journal of Nephrology, 2014, 39, 476-483.	1.4	13

#	Article	IF	CITATIONS
217	1,25-Dihydroxycholecalciferol Analogs Cannot Replace Vitamin D in Normocalcemic Male Rats. Journal of Nutrition, 1993, 123, 1777-1785.	1.3	12
218	20-Oxopregnacalciferols: Vitamin D compounds that bind the progesterone receptor. Tetrahedron Letters, 1994, 35, 2295-2298.	0.7	12
219	Synthesis and Biological Activity of 2-(3′-Hydroxypropylidene)-1α-hydroxy-19-norvitamin D Analogues with Shortened Alkyl Side Chains. Journal of Medicinal Chemistry, 2011, 54, 6832-6842.	2.9	12
220	A 20 <i>S</i> Combined with a 22 <i>R</i> Configuration Markedly Increases both in Vivo and in Vitro Biological Activity of 1α,25-Dihydroxy-22-methyl-2-methylene-19-norvitamin D ₃ . Journal of Medicinal Chemistry, 2012, 55, 4352-4366.	2.9	12
221	Is there more to learn about functional vitamin D metabolism?. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 3-6.	1.2	12
222	Analogs of 11±,25-Dihydroxyvitamin D3 in Clinical Use. Vitamins and Hormones, 2016, 100, 151-164.	0.7	12
223	Long term follow-up of bone mineral status in children with renal disease. Pediatric Nephrology, 1988, 2, 22-26.	0.9	11
224	24- and 26-Homo-1, 25-dihydroxyvitamin D3 Analogs: Potencies on in vitro bone resorption differ from those reported for cell differentiation. Journal of Bone and Mineral Research, 1990, 5, 201-206.	3.1	11
225	Therapeutic potential of the 2-alkyl and 2-alkylidene-19-nor-(20S)-modified analogs of 1α,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 67-73.	1.2	11
226	The absence of 25-hydroxyvitamin D 3 -1 $\hat{l}\pm$ -hydroxylase potentiates the suppression of EAE in mice by ultraviolet light. Journal of Steroid Biochemistry and Molecular Biology, 2016, 163, 98-102.	1.2	11
227	Synthesis of (22R)- and (22S)-22,25-dihydroxyvitamin D3 and determination of their biological activity Chemical and Pharmaceutical Bulletin, 1981, 29, 2254-2260.	0.6	10
228	Studies on organic fluorine compounds. LII. Synthesis and biological activity of 26,26,26,27,27-pentafluoro-1.ALPHAhydroxy-27-methoxyvitamin D3 Chemical and Pharmaceutical Bulletin, 1988, 36, 4144-4147.	0.6	10
229	Isolation and characterization of the chicken vitamin D receptor gene and its promoter. Journal of Cellular Biochemistry, 2000, 77, 92-102.	1.2	10
230	Protein synthesis is required for optimal induction of 25-hydroxyvitamin D3-24-hydroxylase, osteocalcin, and osteopontin mRNA by 1,25-dihydroxyvitamin D3. Archives of Biochemistry and Biophysics, 2002, 404, 18-24.	1.4	10
231	13,13-Dimethyl-des-C,D analogues of (20S)-1α,25-dihydroxy-2-methylene-19-norvitamin D3 (2MD): Total synthesis, docking to the VDR, and biological evaluation. Bioorganic and Medicinal Chemistry, 2011, 19, 7205-7220.	1.4	10
232	Synthesis and Biological Activity of 25-Hydroxy-2-methylene-vitamin D ₃ Analogues Monohydroxylated in the A-ring. Journal of Medicinal Chemistry, 2014, 57, 8319-8331.	2.9	10
233	The development of a bone- and parathyroid-specific analog of vitamin D: 2-methylene-19-Nor-(20S)-1α,25-dihydroxyvitamin D3. BoneKEy Reports, 2014, 3, 514.	2.7	10
234	Novel 9-Alkyl- and 9-Alkylidene-Substituted 1α,25-Dihydroxyvitamin D ₃ Analogues: Synthesis and Biological Examinations. Journal of Medicinal Chemistry, 2015, 58, 6237-6247.	2.9	10

#	Article	IF	CITATIONS
235	Use of 2MD, a Novel Oral Calcitriol Analog, in Hemodialysis Patients with Secondary Hyperparathyroidism. American Journal of Nephrology, 2016, 43, 213-220.	1.4	10
236	Analysis of the binding sites of vitamin D 1α-hydroxylase (CYP27B1) and vitamin D 24-hydroxylase (CYP24A1) for the design of selective CYP24A1 inhibitors: Homology modelling, molecular dynamics simulations and identification of key binding requirements. Bioorganic and Medicinal Chemistry, 2017, 25, 5629-5636.	1.4	10
237	Salate derivatives found in sunscreens block experimental autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8528-8531.	3.3	10
238	Analysis of Basal Regulatory Elements in the 25-Hydroxyvitamin D3 1α-Hydroxylase Gene Promoter. Archives of Biochemistry and Biophysics, 2001, 388, 121-126.	1.4	9
239	New highly calcemic 1α,25-dihydroxy-19-norvitamin D3 compounds with modified side chain: 26,27-dihomo- and 26,27-dimethylene analogs in 20S-series. Steroids, 2002, 67, 247-256.	0.8	9
240	Differential recruitment of coactivators to the vitamin D receptor transcriptional complex by 1α,25-dihydroxyvitamin D3 analogs. Archives of Biochemistry and Biophysics, 2007, 465, 443-451.	1.4	9
241	Synthesis and biological evaluation of a des-C,D-analog of 2-methylene-19-nor-1α,25-(OH)2D3. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 298-304.	1.2	9
242	Synthesis and biological evaluation of 6-methyl analog of 1α,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 29-33.	1.2	9
243	Synthesis and biological evaluation of novel 6-substituted analogs of 1α,25-dihydroxy-19-norvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 30-33.	1.2	9
244	A Methylene Group on C-2 of 24,24-Difluoro-19-nor-1α,25-dihydroxyvitamin D ₃ Markedly Increases Bone Calcium Mobilization in Vivo. Journal of Medicinal Chemistry, 2015, 58, 9731-9741.	2.9	9
245	The Vitamin D-Caicium Axis-1983. , 1985, , 491-511.		9
246	Computerized analysis of double-label autoradiographs: A screening method for 1,25-dihydroxyvitamin D3 induced changes in intestinal protein synthesis. Electrophoresis, 1982, 3, 346-353.	1.3	8
247	Cloning of the mouse 25-hydroxyvitamin D3-1α-hydroxylase (CYP1α) gene. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 109-113.	1.1	8
248	Model of three-dimensional structure of VDR bound with Vitamin D3 analogs substituted at carbon-2. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 107-110.	1.2	8
249	New derivative of 1α,25-dihydroxy-19-norvitamin D3 with 3′-alkoxypropylidene moiety at C-2: synthesis, biological activity and conformational analysis. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 25-30.	1.2	8
250	Highly potent 2-methylene analogs of 1α,25-dihydroxyvitamin D3: Synthesis and biological evaluation. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 9-13.	1.2	8
251	2MD (DP001), a Single Agent in the Management of Hemodialysis Patients: A Randomized Trial. American Journal of Nephrology, 2017, 45, 40-48.	1.4	8
252	Suppression of experimental autoimmune encephalomyelitis by ultraviolet light is not mediated by isomerization of urocanic acid. BMC Neuroscience, 2017, 18, 8.	0.8	8

#	Article	IF	CITATIONS
253	Vitamin D deficiency in the <i>ApcPirc/+</i> rat does not exacerbate colonic tumorigenesis, while low dietary calcium might be protective. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	8
254	Synthesis of 6,7-diaza-19-norvitamin D compounds. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 899-904.	1.0	7
255	Hypophosphatemia and the Development of Rickets in Osteopetrotic (op/op) Mice. Journal of Bone and Mineral Research, 1997, 12, 1944-1951.	3.1	7
256	2-Methylene analogs of 1α-hydroxy-19-norvitamin D3: synthesis, biological activities and docking to the ligand binding domain of the rat vitamin D receptor. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 13-17.	1.2	7
257	2-Methylene-19-nor-20(S)-1α-hydroxy-bishomopregnacalciferol [20(S)-2MbisP], an analog of vitamin D3 [1,25(OH)2D3], does not stimulate intestinal phosphate absorption at levels previously shown to suppress parathyroid hormone. Steroids, 2008, 73, 1277-1284.	0.8	7
258	New 1α,25-dihydroxy-19-norvitamin D3 analogs with a frozen A-ring conformation. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 46-50.	1.2	7
259	Response to Vitamin D in Adrenalectomized Animals. Nature, 1966, 210, 96-97.	13.7	6
260	Longâ€ŧerm therapy of vitamin Dâ€resistant rickets with 25â€hydroxycholecalciferol. Clinical Pharmacology and Therapeutics, 1975, 17, 202-211.	2.3	6
261	Synthesis of 25-hydroxy-[26,27-3H]vitamin D2, 1,25-dihydroxy-[26,27-3H]vitamin D2 and their (24R)-epimers. Analytical Biochemistry, 1987, 161, 96-102.	1.1	6
262	The calcitonin/calcitonin gene related peptide-α gene is not required for 1α,25-dihydroxyvitamin D3-mediated suppression of experimental autoimmune encephalomyelitis. Archives of Biochemistry and Biophysics, 2009, 488, 105-108.	1.4	6
263	Synthesis and biological activity of 25-hydroxy-2-methylene-vitamin D3 compounds. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 17-22.	1.2	6
264	Synthesis and Biological Activity of 2-Methylene Analogues of Calcitriol and Related Compounds. Journal of Medicinal Chemistry, 2015, 58, 9653-9662.	2.9	6
265	The Association of Mineral Metabolism with Vascular Access Patency. Journal of Vascular Access, 2016, 17, 392-396.	0.5	6
266	Design, synthesis and biological properties of seco-d-ring modified 1α,25-dihydroxyvitamin D3 analogues. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 144-154.	1.2	6
267	Synthesis and Biological Activity of 2,22-Dimethylene Analogues of 19-Norcalcitriol and Related Compounds. Journal of Medicinal Chemistry, 2020, 63, 7355-7368.	2.9	6
268	The Functional Metabolism and Molecular Biology of Vitamin D Action. , 2010, , 61-97.		6
269	Vitamin D esters are the major form of vitamin D produced by UV irradiation in mice. Photochemical and Photobiological Sciences, 2022, 21, 1399-1404.	1.6	6
270	Short-Term Regulation of the Renal Vitamin D Receptor in Rats by 1,25-Dihydroxycholecalciferol Is Calcium Insensitive ,. Journal of Nutrition, 1992, 122, 2316-2321.	1.3	5

#	ARTICLE	IF	CITATIONS
271	Novel styryl-indoles as small molecule inhibitors of 25-hydroxyvitamin D-24-hydroxylase (CYP24A1): Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2014, 87, 39-51.	2.6	5
272	Vitamin D receptor absence does not enhance intestinal tumorigenesis in <i>ApcPirc/+</i> rats. Biology Open, 2022, 11, .	0.6	5
273	A new tritium-release assay for 25-hydroxyvitamin D-1α-hydroxylase. Analytical Biochemistry, 1987, 164, 424-429.	1.1	4
274	Ring-A-seco analogs of 1α,25-dihydroxy-19-norvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 39-43.	1.2	4
275	26- and 27-Methyl groups of 2-substituted, 19-nor-1α,25-dihydroxylated vitamin D compounds are essential for calcium mobilization in vivo. Bioorganic Chemistry, 2013, 47, 9-16.	2.0	4

276

0

#	Article	IF	CITATIONS
289	Investigation on the Potential Role of the AH Receptor Nuclear Translocator Protein in Vitamin D Receptor Action. Journal of Receptors and Signal Transduction, 1993, 13, 1147-1159.	1.2	1
290	A new suprasterol by photochemical reaction of $1\hat{l}\pm$,25-dihydroxy-9-methylene-19-norvitamin D3. Organic and Biomolecular Chemistry, 2016, 14, 1646-1652.	1.5	1
291	D- seco -Vitamin D analogs having reversed configurations at C-13 and C-14: Synthesis, docking studies and biological evaluation. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 57-63.	1.2	1
292	Historical Overview of Vitamin D. , 2018, , 3-12.		1
293	2-Carbon-Modified Analogs of 19-Nor-1α,25-Dihydroxyvitamin D3. , 2005, , 1543-1555.		1
294	New derivative of 1\$alpha;,25-dihydroxy-19-norvitamin D3 with 3\$prime;-alkoxypropylidene moiety at C-2: synthesis, biological activity and conformational analysis*1. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 25-25.	1.2	0
295	2-Methylene analogs of 1\$alpha;-hydroxy-19-norvitamin D3: synthesis, biological activities and docking to the ligand binding domain of the rat vitamin D receptor*1. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 13-13.	1.2	0
296	VITAMIN D SCIENCE, WARF, AND UNIVERSITY OF WISCONSIN-MADISON. Technology and Innovation, 2013, 15, 187-195.	0.2	0
297	26-Desmethyl-2-methylene-22-ene-19-nor-1α,25-dihydroxyvitamin D3 compounds selectively active on intestine. Steroids, 2014, 83, 27-38.	0.8	0
298	Vitamin D Metabolism in Normal and Chronic Kidney Disease States. , 2016, , 3-17.		0
299	Nonskeletal effects of vitamin D. , 2020, , 757-774.		0

300 Vitamins | Vitamin D. , 2021, , 1115-1120.

18