Cheol-Koo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9061485/publications.pdf

Version: 2024-02-01

43 papers

4,007 citations

331670
21
h-index

276875 41 g-index

43 all docs 43 docs citations

43 times ranked

4908 citing authors

#	Article	IF	CITATIONS
1	CD4+/CD8+ Ratio and Growth Differentiation Factor 8 Levels in Peripheral Blood of Large Canine Males Are Useful Parameters to Build an Age Prediction Model. World Journal of Men?s Health, 2022, 40, .	3.3	1
2	Disruption of nucleocytoplasmic trafficking as a cellular senescence driver. Experimental and Molecular Medicine, 2021, 53, 1092-1108.	7.7	19
3	Long-Living Budding Yeast Cell Subpopulation Induced by Ethanol/Acetate and Respiration. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1448-1456.	3.6	6
4	The Discovery of Druggable Anti-aging Agents. Annals of Geriatric Medicine and Research, 2020, 24, 232-242.	1.8	6
5	Growth signaling and longevity in mouse models. BMB Reports, 2019, 52, 70-85.	2.4	14
6	Recent studies on anti-aging compounds with Saccharomyces cerevisiae as a model organism. Translational Medicine of Aging, 2019, 3, 109-115.	1.3	4
7	Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast. Aging, 2019, 11, 4254-4273.	3.1	11
8	Leptin is a dose-dependent marker of caloric restriction in adipose tissues located in different parts of the mouse body. Molecular and Cellular Toxicology, 2018, 14, 53-59.	1.7	9
9	Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 29-38.	3.6	25
10	Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast. Molecules and Cells, 2017, 40, 307-313.	2.6	20
11	Correlation between Antioxidant Enzyme Activity, Free Iron Content and Lipid Oxidation in Four Lines of Korean Native Chicken Meat. Korean Journal for Food Science of Animal Resources, 2016, 36, 44-50.	1.5	12
12	Whole-transcriptome analysis of mouse adipose tissue in response to short-term caloric restriction. Molecular Genetics and Genomics, 2016, 291, 831-847.	2.1	21
13	Cellular Longevity of Budding Yeast During Replicative and Chronological Aging., 2015,, 89-109.		0
14	Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Letters, 2015, 589, 349-357.	2.8	11
15	Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions. Molecules and Cells, 2015, 38, 1054-1063.	2.6	25
16	Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Experimental Gerontology, 2013, 48, 1455-1468.	2.8	25
17	Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Biochemical and Biophysical Research Communications, 2013, 439, 126-131.	2.1	23
18	Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast. Biochemical and Biophysical Research Communications, 2013, 441, 236-242.	2.1	33

#	Article	IF	Citations
19	The lifespan of Korean eunuchs. Current Biology, 2012, 22, R792-R793.	3.9	162
20	Effects of Oxypeucedanin on Global Gene Expression and MAPK Signaling Pathway in Mouse Neuroblastoma Neuro-2A Cells. Planta Medica, 2011, 77, 1512-1518.	1.3	9
21	Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2011, 409, 308-314.	2.1	32
22	Differences in Hepatic Gene Expression as a Major Distinguishing Factor between Korean Native Pig and Yorkshire. Bioscience, Biotechnology and Biochemistry, 2011, 75, 451-458.	1.3	1
23	Time-dependently expressed markers and the characterization for premature senescence induced by ionizing radiation in MCF7. Oncology Reports, 2010, 24, 395-403.	2.6	13
24	Molecular Characterization of a Novel Bacterial Aryl Acylamidase Belonging to the Amidase Signature Enzyme Family. Molecules and Cells, 2010, 29, 485-492.	2.6	23
25	Quantitative gene expression analysis on chromosome 6 between Korean native pigs and Yorkshire breeds for fat deposition. Genes and Genomics, 2010, 32, 385-393.	1.4	6
26	Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Molecular Biology Reports, 2010, 37, 3931-3939.	2.3	56
27	Transcriptional Alteration of p53 Related Processes As a Key Factor for Skeletal Muscle Characteristics in Sus scrofa. Molecules and Cells, 2009, 28, 565-574.	2.6	14
28	Differential Expression of Cytochrome P450 Genes Regulate the Level of Adipose Arachidonic Acid in Sus Scrofa. Asian-Australasian Journal of Animal Sciences, 2008, 21, 967-971.	2.4	8
29	Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Molecules and Cells, 2008, 26, 299-307.	2.6	29
30	Cell Cycle–Specified Fluctuation of Nucleosome Occupancy at Gene Promoters. PLoS Genetics, 2006, 2, e158.	3.5	104
31	Age and Vitamin E-Induced Changes in Gene Expression Profiles of T Cells. Journal of Immunology, 2006, 177, 6052-6061.	0.8	63
32	Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Research, 2006, 16, 1517-1528.	5.5	125
33	Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genetics, 2004, 36, 900-905.	21.4	644
34	The impact of \hat{l} ±-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice. Free Radical Biology and Medicine, 2004, 36, 1043-1057.	2.9	122
35	Vitamin E and Gene Expression in Immune Cells. Annals of the New York Academy of Sciences, 2004, 1031, 96-101.	3.8	33
36	Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics, 2003, 19, 1132-1139.	4.1	298

#	Article	lF	CITATIONS
37	Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14988-14993.	7.1	289
38	Effects of Caloric Restriction on Gene Expression. , 2002, 6, 17-32.		6
39	Gene expression profiling of aging using DNA microarrays. Mechanisms of Ageing and Development, 2002, 123, 177-193.	4.6	155
40	A mixture model approach for the analysis of microarray gene expression data. Computational Statistics and Data Analysis, 2002, 39, 1-20.	1.2	287
41	Microarray Profiling of Gene Expression in Aging and Its Alteration by Caloric Restriction in Mice. Journal of Nutrition, 2001, 131, 918S-923S.	2.9	240
42	Gene-expression profile of the ageing brain in mice. Nature Genetics, 2000, 25, 294-297.	21.4	1,016
43	Use of Urinary PAH Metabolites to Assess PAH Exposure Intervention among Coke Oven Workers. Journal of Occupational Health, 2000, 42, 138-143.	2.1	7