David Madrid-Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9061171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implantable Collamer Posterior Chamber Intraocular Lenses: A Review of Potential Complications. Journal of Refractive Surgery, 2011, 27, 765-776.	1.1	201
2	The Tear Film and the optical Quality of the Eye. Ocular Surface, 2010, 8, 185-192.	2.2	84
3	Optical Quality Differences Between Three Multifocal Intraocular Lenses: Bifocal Low Add, Bifocal Moderate Add, and Trifocal. Journal of Refractive Surgery, 2013, 29, 749-754.	1.1	79
4	Clinical outcomes after implantation of a posterior chamber collagen copolymer phakic intraocular lens with a central hole for myopic correction. Journal of Cataract and Refractive Surgery, 2013, 39, 915-921.	0.7	69
5	Optical power distribution of refractive and aspheric multifocal contact lenses: Effect of pupil size. Contact Lens and Anterior Eye, 2015, 38, 317-321.	0.8	56
6	Soft multifocal simultaneous image contact lenses: a review. Australasian journal of optometry, The, 2017, 100, 107-127.	0.6	52
7	Intrastromal Corneal Ring Segment Implantation in 409 Paracentral Keratoconic Eyes. Cornea, 2016, 35, 1421-1426.	0.9	50
8	Visual quality after diffractive intraocular lens implantation in eyes with previous myopic laser in situ keratomileusis. Journal of Cataract and Refractive Surgery, 2008, 34, 1848-1854.	0.7	47
9	Optical and visual performance of diffractive intraocular lens implantation after myopic laser in situ keratomileusis. Journal of Cataract and Refractive Surgery, 2009, 35, 825-832.	0.7	46
10	Intrastromal corneal ring segments and posterior chamber phakic intraocular lens implantation for keratoconus correction. Journal of Cataract and Refractive Surgery, 2011, 37, 706-713.	0.7	46
11	Intrastromal corneal ring segment implantation in 219 keratoconic eyes at different stages. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1705-1712.	1.0	45
12	Inferior Intrastromal Corneal Ring Segments in Paracentral Keratoconus With No Coincident Topographic and Coma Axis. Journal of Refractive Surgery, 2013, 29, 266-272.	1.1	45
13	Optical performance of two new trifocal intraocular lenses: throughâ€focus modulation transfer function and influence of pupil size. Clinical and Experimental Ophthalmology, 2014, 42, 271-276.	1.3	43
14	In vitro optical quality differences between multifocal apodized diffractive intraocular lenses. Journal of Cataract and Refractive Surgery, 2013, 39, 928-936.	0.7	39
15	Visual simulation through different intraocular lenses using adaptive optics: Effect of tilt and decentration. Journal of Cataract and Refractive Surgery, 2012, 38, 947-958.	0.7	38
16	Visual performance of two simultaneous vision multifocal contact lenses. Ophthalmic and Physiological Optics, 2013, 33, 51-56.	1.0	38
17	Refractive lens exchange with spherical diffractive intraocular lens implantation after hyperopic laser in situ keratomileusis. Journal of Cataract and Refractive Surgery, 2009, 35, 1744-1750.	0.7	35
18	Optical Quality Comparison of Conventional and Hole-Visian Implantable Collamer Lens at Different Degrees of Decentering. American Journal of Ophthalmology, 2013, 156, 69-76.e1.	1.7	34

#	Article	IF	CITATIONS
19	Stereoacuity with Simultaneous Vision Multifocal Contact Lenses. Optometry and Vision Science, 2010, 87, E663-E668.	0.6	33
20	Long-Term Follow-up of Intrastromal Corneal Ring Segments (210-Degree Arc Length) in Central Keratoconus With High Corneal Asphericity. Cornea, 2017, 36, 1325-1330.	0.9	33
21	In vitro power profiles of multifocal simultaneous vision contact lenses. Contact Lens and Anterior Eye, 2014, 37, 162-167.	0.8	32
22	Seven-year follow-up of posterior chamber phakic intraocular lens with central port design. Eye and Vision (London, England), 2021, 8, 23.	1.4	32
23	Collagen copolymer toric posterior chamber phakic intraocular lenses to correct high myopic astigmatism. Journal of Cataract and Refractive Surgery, 2010, 36, 1349-1357.	0.7	31
24	Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: Effect of tilt and decentration. Journal of Cataract and Refractive Surgery, 2012, 38, 774-786.	0.7	31
25	Stereoacuity with balanced presbyopic contact lenses. Australasian journal of optometry, The, 2011, 94, 76-81.	0.6	30
26	Visual quality after diffractive intraocular lens implantation in eyes with previous hyperopic laser in situ keratomileusis. Journal of Cataract and Refractive Surgery, 2011, 37, 1090-1096.	0.7	29
27	Visual Performance of Four Simultaneous-Image Multifocal Contact Lenses Under Dim and Glare Conditions. Eye and Contact Lens, 2015, 41, 19-24.	0.8	29
28	Characterisation of the porcine eyeball as an in-vitro model for dry eye. Contact Lens and Anterior Eye, 2018, 41, 13-17.	0.8	29
29	Comparison of Immersion Ultrasound, Partial Coherence Interferometry, and Low Coherence Reflectometry for Ocular Biometry in Cataract Patients. Journal of Refractive Surgery, 2011, 27, 665-671.	1.1	29
30	Changes in Accommodative Responses with Multifocal Contact Lenses: A Pilot Study. Optometry and Vision Science, 2011, 88, 1309-1316.	0.6	28
31	Visual and Refractive Outcomes in Hyperopic Pseudophakic Patients Implanted with the Acri.LISA 366D Multifocal Intraocular Lens. American Journal of Ophthalmology, 2009, 148, 214-220.e1.	1.7	26
32	Femtosecond laser–assisted intrastromal corneal ring segment implantation for high astigmatism correction after penetrating keratoplasty. Journal of Cataract and Refractive Surgery, 2013, 39, 1660-1667.	0.7	26
33	Comparison of Complication Rates between Manual and Femtosecond Laser-Assisted Techniques for Intrastromal Corneal Ring Segments Implantation in Keratoconus. Current Eye Research, 2019, 44, 1291-1298.	0.7	26
34	Predictability of Tunnel Depth for Intrastromal Corneal Ring Segments Implantation Between Manual and Femtosecond Laser Techniques. Journal of Refractive Surgery, 2018, 34, 188-194.	1.1	26
35	Surgical Options for the Refractive Correction of Keratoconus: Myth or Reality. Journal of Ophthalmology, 2017, 2017, 1-18.	0.6	25
36	Visual and optical performance with hybrid multifocal intraocular lenses. Australasian journal of optometry, The, 2010, 93, 426-440.	0.6	24

#	Article	IF	CITATIONS
37	Accommodative Functions with Multifocal Contact Lenses: A Pilot Study. Optometry and Vision Science, 2011, 88, 998-1004.	0.6	24
38	Visual quality comparison of conventional and Hole-Visian implantable collamer lens at different degrees of decentering. British Journal of Ophthalmology, 2014, 98, 59-64.	2.1	24
39	A Novel Automated Approach for Infrared-Based Assessment of Meibomian Gland Morphology. Translational Vision Science and Technology, 2019, 8, 17.	1.1	24
40	Sequential intrastromal corneal ring segment and monofocal intraocular lens implantation for keratoconus and cataract: Long-term follow-up. Journal of Cataract and Refractive Surgery, 2017, 43, 246-254.	0.7	23
41	Long-Term Follow-up of Intrastromal Corneal Ring Segment Implantation in Pediatric Keratoconus. Cornea, 2019, 38, 840-846.	0.9	23
42	Changes in Accommodation and Ocular Aberration With Simultaneous Vision Multifocal Contact Lenses. Eye and Contact Lens, 2012, 38, 288-294.	0.8	22
43	The effect of ageing on the ocular surface parameters. Contact Lens and Anterior Eye, 2018, 41, 5-12.	0.8	22
44	Stereopsis in bilaterally multifocal pseudophakic patients. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 245-251.	1.0	20
45	In vitro power profiles of daily disposable contact lenses. Contact Lens and Anterior Eye, 2013, 36, 247-252.	0.8	20
46	Optical quality of aspheric toric intraocular lenses at different degrees of decentering. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 969-975.	1.0	20
47	Repeatability of in vitro power profile measurements for multifocal contact lenses. Contact Lens and Anterior Eye, 2015, 38, 168-172.	0.8	20
48	Repeatability of Noninvasive Keratograph 5M Measurements Associated With Contact Lens Wear. Eye and Contact Lens, 2019, 45, 377-381.	0.8	20
49	Meibomian Gland Morphology: The Influence of Structural Variations on Gland Function and Ocular Surface Parameters. Cornea, 2019, 38, 1506-1512.	0.9	19
50	Bilateral Implantation of the Acri.LISA Bifocal Intraocular Lens in Myopic Eyes. European Journal of Ophthalmology, 2010, 20, 83-89.	0.7	18
51	Long-Term Follow-Up of Intrastromal Corneal Ring Segments in Paracentral Keratoconus with Coincident Corneal Keratometric, Comatic, and Refractive Axes: Stability of the Procedure. Journal of Ophthalmology, 2017, 2017, 1-9.	0.6	17
52	The influence of meibomian gland loss on ocular surface clinical parameters. Contact Lens and Anterior Eye, 2019, 42, 562-568.	0.8	17
53	Optical Performance of a Trifocal IOL and a Novel Extended Depth of Focus IOL Combined With Different Corneal Profiles. Journal of Refractive Surgery, 2020, 36, 435-441.	1.1	17
54	Base Curve Influence on the Fitting and Comfort of the Senofilcon A Contact Lens. Journal of Optometry, 2009, 2, 90-93.	0.7	16

#	Article	IF	CITATIONS
55	Effect of Simulated IOL Tilt and Decentration on Spherical Aberration After Hyperopic LASIK for Different Intraocular Lenses. Journal of Refractive Surgery, 2012, 28, 327-335.	1.1	16
56	OCT for Assessing Artificial Tears Effectiveness in Contact Lens Wearers. Optometry and Vision Science, 2012, 89, E62-E69.	0.6	14
57	The Effect of Anesthetic Eye Drop Instillation on the Distribution of Corneal Thickness. Cornea, 2013, 32, e102-e105.	0.9	14
58	Comparison of clinical outcomes between manual and femtosecond laser techniques for intrastromal corneal ring segment implantation. European Journal of Ophthalmology, 2020, 30, 1246-1255.	0.7	14
59	Visual Performance of a Multifocal Toric Soft Contact Lens. Optometry and Vision Science, 2012, 89, 1627-1635.	0.6	13
60	Objective assessment of the effect of pupil size upon the power distribution of multifocal contact lenses. International Journal of Ophthalmology, 2017, 10, 103-108.	0.5	12
61	Impact of contact lens material and design on the ocular surface. Australasian journal of optometry, The, 2018, 101, 188-192.	0.6	12
62	Adjustment of Intrastromal Corneal Ring Segments After Unsuccessful Implantation in Keratoconic Eyes. Cornea, 2018, 37, 182-188.	0.9	12
63	Medium-term visual, refractive, and intraocular stability after implantation of a posterior chamber phakic intraocular lens to correct moderate to high myopia. Journal of Cataract and Refractive Surgery, 2011, 37, 1791-1798.	0.7	11
64	"In Situ―Corneal and Contact Lens Thickness Changes with High-Resolution Optical Coherence Tomography. Cornea, 2012, 31, 633-638.	0.9	11
65	Diurnal Variations in Visual Performance for Disposable Contact Lenses. Optometry and Vision Science, 2013, 90, 682-690.	0.6	10
66	Randomized crossover trial of silicone hydrogel contact lenses. Contact Lens and Anterior Eye, 2019, 42, 475-481.	0.8	10
67	Depth of Focus Through Different Intraocular Lenses in Patients With Different Corneal Profiles Using Adaptive Optics Visual Simulation. Journal of Refractive Surgery, 2012, 28, 406-413.	1.1	10
68	Three-year follow-up of intrastromal corneal ring segment implantation in central keratoconus with regular astigmatism: â€~Bow-tie' shape. European Journal of Ophthalmology, 2020, 30, 643-649.	0.7	9
69	Intrastromal corneal ring segment implantation in paracentral keratoconus with perpendicular topographic astigmatism and comatic axis. European Journal of Ophthalmology, 2020, 31, 112067212095234.	0.7	9
70	Optical and Clinical Outcomes of an Extended Range of Vision Intraocular Lens. Journal of Refractive Surgery, 2022, 38, 168-176.	1.1	9
71	Myopic astigmatism correction: comparison of a Toric Implantable Collamer Lens and a bioptics technique by an adaptive optics visual simulator. Ophthalmic and Physiological Optics, 2013, 33, 114-122.	1.0	8
72	Visual Quality Differences Between Orthokeratology and LASIK to Compensate Low–Moderate Myopia. Cornea, 2013, 32, 1137-1141.	0.9	8

#	Article	IF	CITATIONS
73	Recovery Evaluation of Induced Changes in Higher Order Aberrations From the Anterior Surface of the Cornea for Different Pupil Sizes After Cessation of Corneal Refractive Therapy. Cornea, 2013, 32, e16-e20.	0.9	8
74	Clinical Outcomes of Sequential Intrastromal Corneal Ring Segments and an Extended Range of Vision Intraocular Lens Implantation in Patients with Keratoconus and Cataract. Journal of Ophthalmology, 2018, 2018, 1-7.	0.6	8
75	Pilot Study on Visual Function and Fundus Autofluorescence Assessment in Diabetic Patients. Journal of Ophthalmology, 2016, 2016, 1-10.	0.6	7
76	Assessing the in vitro optical quality of presbyopic solutions based on the axial modulation transfer function. Journal of Cataract and Refractive Surgery, 2016, 42, 780-787.	0.7	7
77	Optical quality of hyperopic and myopic phakic intraocular lenses. Indian Journal of Ophthalmology, 2014, 62, 437.	0.5	7
78	In vitro optical performance of a new aberration-free intraocular lens. Eye, 2014, 28, 614-620.	1.1	6
79	Comparison of the impact of nesofilcon A hydrogel contact lens on the ocular surface and the comfort of presbyopic and non-presbyopic wearers. International Journal of Ophthalmology, 2019, 11, 640-646.	0.5	6
80	Effects of Blink Rate on Tear Film Optical Quality Dynamics with Different Soft Contact Lenses. Journal of Ophthalmology, 2019, 2019, 1-8.	0.6	6
81	Optical tolerance to rotation of trifocal toric intraocular lenses as a function of the cylinder power. European Journal of Ophthalmology, 2021, 31, 1007-1013.	0.7	6
82	Effect of Multizone Refractive Multifocal Contact Lenses on Standard Automated Perimetry. Eye and Contact Lens, 2012, 38, 278-281.	0.8	5
83	Visual simulation through an aspheric aberrationâ€correcting intraocular lens in subjects with different corneal profiles using adaptive optics. Australasian journal of optometry, The, 2013, 96, 379-384.	0.6	5
84	Accommodation in human eye models: a comparison between the optical designs of Navarro, Arizona and Liou-Brennan. International Journal of Ophthalmology, 2017, 10, 43-50.	0.5	5
85	FemtoLASIK After Descemet Membrane Endothelial Keratoplasty. Cornea, 2020, 39, 468-472.	0.9	5
86	Visual function, ocular surface integrity and symptomatology of a new extended depth-of-focus and a conventional multifocal contact lens. Contact Lens and Anterior Eye, 2021, 44, 101384.	0.8	5
87	Visual and Tomographic Outcomes of a 300° Arc-length ICRS Implantation in Moderate to Advanced Central Keratoconus. Journal of Refractive Surgery, 2021, 37, 249-255.	1.1	5
88	The Effect of Intracorneal Ring Segments Implantation for Keratoconus on In Vivo Corneal Biomechanics Assessed With the Corvis ST. Journal of Refractive Surgery, 2022, 38, 264-269.	1.1	4
89	Visual performance of the Akreos Adapt AO intraocular lens in patients with different corneal profiles measured with an adaptive optics visual simulator. British Journal of Ophthalmology, 2012, 96, 1099-1103.	2.1	3
90	Effect of defocus combined with rotation on the optical performance of trifocal toric IOLs. European Journal of Ophthalmology, 2022, 32, 249-254.	0.7	3

#	Article	IF	CITATIONS
91	Reply : Diffractive intraocular lens power after myopic laser in situ keratomileusis. Journal of Cataract and Refractive Surgery, 2009, 35, 797.	0.7	2
92	Effect of multizone refractive multifocal contact lenses on the Cirrus HD OCT retinal measurements. Australasian journal of optometry, The, 2013, 96, 53-57.	0.6	1
93	Simulated prototype of posterior chamber phakic intraocular lens for presbyopia correction. Journal of Cataract and Refractive Surgery, 2015, 41, 2266-2273.	0.7	1
94	A New Pre-descemetic Corneal Ring (Neoring) in Deep Anterior Lamellar Keratoplasty for Moderate-Advanced Keratoconus: A Pilot 2-Year Long-Term Follow-Up Study. Frontiers in Medicine, 2021, 8, 771365.	1.2	1
95	Reply : Keratoconus correction using intrastromal corneal ring segments and posterior chamber phakic intraocular lens implantation. Journal of Cataract and Refractive Surgery, 2011, 37, 1374-1375.	0.7	0
96	Rebound tonometry for the measurement of intraocular pressure and its relation with gender and refractive errors in Mozambique. Therapy: Open Access in Clinical Medicine, 2011, 8, 555-561.	0.2	0
97	Visual acuity changes in presbyopic patients fitted with 3 multifocal contact lenses. Contact Lens and Anterior Eye, 2012, 35, e5.	0.8	0
98	Statistical analysis of stereopsis in ophthalmology research. Graefe's Archive for Clinical and Experimental Ophthalmology, 2012, 250, 783-783.	1.0	0
99	Impact of a daily hydrogel contact lens with higher water content on the ocular surface of young and presbyopes wearers. Contact Lens and Anterior Eye, 2018, 41, S75.	0.8	0
100	Dry Eye Disease and Refractive Corrections. Journal of Ophthalmology, 2019, 2019, 1-2.	0.6	0
101	Impact of contact lens wear on NLRP3 gene expression: Implications for ocular frailty in middle-aged adults. Experimental Eye Research, 2021, 202, 108356.	1.2	0
102	Ocular Surface Temperature in DED under Natural Non-Controlled Blinking Conditions. Applied Sciences (Switzerland), 2022, 12, 4596.	1.3	0