Eugene Mingaliev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9060947/publications.pdf

Version: 2024-02-01

840119 839053 31 333 11 18 citations h-index g-index papers 31 31 31 242 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals. Journal of Applied Physics, 2011, 110, 052013.	1.1	65
2	<i>In situ</i> investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation. Applied Physics Letters, 2011, 99, 082901.	1.5	46
3	Raman Study of Neutral and Charged Domain Walls in Lithium Niobate. Ferroelectrics, 2010, 398, 34-41.	0.3	29
4	Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals. Journal of Applied Physics, 2013, 113, .	1.1	24
5	Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating. AIP Advances, 2015, 5, 107110.	0.6	15
6	Nanoscale Domain Structuring in Lithium Niobate Single Crystals by Pulse Laser Heating. Ferroelectrics, 2010, 398, 49-54.	0.3	14
7	Visualization of nanodomain structures in lithium niobate and lithium tantalate crystals by scanning electron microscopy. Ferroelectrics, 2016, 503, 60-67.	0.3	13
8	Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Materialia, 2021, 219, 117270.	3.8	13
9	Formation of Stripe Domain Structures by Pulse Laser Irradiation of LiNbO ₃ Crystals. Ferroelectrics, 2010, 399, 7-13.	0.3	12
10	Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers. Applied Physics Letters, 2015, 106, .	1.5	11
11	Formation of snowflake domains during fast cooling of lithium tantalate crystals. Journal of Applied Physics, 2016, 119, .	1.1	11
12	Visualization of nanodomains in lithium niobate single crystals by scanning laser confocal Raman microscopy. Physics of the Solid State, 2011, 53, 109-113.	0.2	9
13	Micro- and Nanodomain Structures Produced by Pulse Laser Heating in Congruent Lithium Tantalate. Ferroelectrics, 2013, 443, 95-102.	0.3	9
14	Self-assembled shape evolution of the domain wall and formation of nanodomain wall traces induced by multiple IR laser pulse irradiation in lithium niobate. Journal of Applied Physics, 2020, 127, 094103.	1.1	9
15	Self-Organized Nanodomain Structures Arising in Lithium Tantalate and Lithium Niobate after Pulse Heating by Infrared Laser. Ferroelectrics, 2015, 476, 134-145.	0.3	8
16	Coffee Ring Effect During Drying of Colloid Drop: Experiment and Computer Simulation. Ferroelectrics, 2015, 476, 47-53.	0.3	8
17	Direct Study of Super-Fast Domain Kinetics in Lead Germanate Single Crystals. Ferroelectrics, 2006, 341, 67-74.	0.3	5
18	Synthesis of stable silver colloids by laser ablation in water. Proceedings of SPIE, 2013, , .	0.8	5

#	Article	IF	CITATIONS
19	High-speed precise cell patterning by pulsed electrohydrodynamic jet printing. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012013.	0.3	5
20	Investigation of domain kinetics in congruent lithium niobate modified by proton exchange. Ferroelectrics, 2016, 496, 110-119.	0.3	4
21	Surface-Enhanced Raman Scattering Using Silver Nanoparticles Produced by Laser Ablation in Liquid. Ferroelectrics, 2015, 477, 54-62.	0.3	3
22	Generation of Picoliter Droplets by Pyroelectrodynamic Effect. Ferroelectrics, 2015, 476, 156-162.	0.3	2
23	Formation of self-organized nanodomain structures in lithium niobate after pulsed infrared laser heating. Physics of the Solid State, 2015, 57, 2020-2024.	0.2	2
24	Formation of the nanodomain structures after pulse laser heating in lithium tantalate: experiment and computer simulation. Ferroelectrics, 2016, 496, 120-127.	0.3	2
25	Deposition of droplets by pyroelectric field created by lithium tantalate with tailored domain structure. Ferroelectrics, 2017, 508, 58-64.	0.3	2
26	Formation of the quasi-regular stripe nanodomain structures in lithium tantalate by scanning laser heating. Ferroelectrics, 2019, 541, 61-65.	0.3	2
27	Creation of nanoparticles and surface nanostructures of alumina by hot water treatment. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012051.	0.3	2
28	Domain structure evolution under multiple pulse heating of lithium niobate by infrared laser. Ferroelectrics, 2020, 560, 79-85.	0.3	2
29	Study of Domain Kinetics in SBN Single Crystals in Electric Field Applied by Suspension of Silver Nanoparticles. Ferroelectrics, 2013, 443, 45-53.	0.3	1
30	Polarization reversal in lithium niobate using electrodes of dendrite shape created by drying drops of protein-NaCl solution. Ferroelectrics, 2018, 525, 161-167.	0.3	0
31	Formation of the maze domain structures in lithium niobate as a result of multiple pulse irradiation by infrared laser. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012052.	0.3	0