
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/906073/publications.pdf Version: 2024-02-01

Ειιμιακι Καταςιρι

#	Article	IF	CITATIONS
1	Pathogenâ€driven coevolution across the CBP60 plant immune regulator subfamilies confers resilience on the regulator module. New Phytologist, 2022, 233, 479-495.	3.5	14
2	Letter to the Editor: DNA Purification-Free PCR from Plant Tissues. Plant and Cell Physiology, 2021, 62, 1503-1505.	1.5	9
3	Environmental Association Identifies Candidates for Tolerance to Low Temperature and Drought. G3: Genes, Genomes, Genetics, 2019, 9, 3423-3438.	0.8	18
4	Different Modes of Negative Regulation of Plant Immunity by Calmodulin-Related Genes. Plant Physiology, 2018, 176, 3046-3061.	2.3	31
5	WRKY70 prevents axenic activation of plant immunity by direct repression of <i>SARD1</i> . New Phytologist, 2018, 217, 700-712.	3.5	60
6	Involvement of Adapter Protein Complex 4 in Hypersensitive Cell Death Induced by Avirulent Bacteria. Plant Physiology, 2018, 176, 1824-1834.	2.3	25
7	Review: Plant immune signaling from a network perspective. Plant Science, 2018, 276, 14-21.	1.7	17
8	Quantification of Plant Cell Death by Electrolyte Leakage Assay. Bio-protocol, 2018, 8, e2758.	0.2	50
9	Nup82 functions redundantly with Nup136 in a salicylic acid-dependent defense response of Arabidopsis thaliana. Nucleus, 2017, 8, 301-311.	0.6	16
10	A plant effectorâ€triggered immunity signaling sector is inhibited by patternâ€triggered immunity. EMBO Journal, 2017, 36, 2758-2769.	3.5	69
11	The highly buffered Arabidopsis immune signaling network conceals the functions of its components. PLoS Genetics, 2017, 13, e1006639.	1.5	138
12	Network Reconstitution for Quantitative Subnetwork Interaction Analysis. Methods in Molecular Biology, 2017, 1578, 223-231.	0.4	3
13	The μ Subunit of <i>Arabidopsis</i> Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins. Molecular Plant-Microbe Interactions, 2016, 29, 345-351.	1.4	24
14	Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in <i>Arabidopsis thaliana</i> . Plant Cell, 2016, 28, 537-556.	3.1	144
15	Toward predictive modeling of large and complex biological signaling networks. Physiological and Molecular Plant Pathology, 2016, 95, 77-83.	1.3	3
16	The receptorâ€like cytoplasmic kinase <scp>PCRK</scp> 1 contributes to patternâ€triggered immunity against <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> . New Phytologist, 2015, 207, 78-90.	3.5	50
17	Putative Serine Protease Effectors of <i>Clavibacter michiganensis</i> Induce a Hypersensitive Response in the Apoplast of <i>Nicotiana</i> Species. Molecular Plant-Microbe Interactions, 2015, 28, 1216-1226.	1.4	32
18	Identification of differentially expressed genes between developing seeds of different soybean cultivars. Genomics Data, 2015, 6, 92-98.	1.3	3

#	Article	IF	CITATIONS
19	Design and Construction of an Inexpensive Homemade Plant Growth Chamber. PLoS ONE, 2015, 10, e0126826.	1.1	16
20	Mechanisms Underlying Robustness and Tunability in a Plant Immune Signaling Network. Cell Host and Microbe, 2014, 15, 84-94.	5.1	117
21	Arabidopsis <i>PECTIN METHYLESTERASEs</i> Contribute to Immunity against <i>Pseudomonas syringae</i> . Plant Physiology, 2014, 164, 1093-1107.	2.3	166
22	The CALMODULIN-BINDING PROTEIN60 Family Includes Both Negative and Positive Regulators of Plant Immunity. Plant Physiology, 2013, 163, 1741-1751.	2.3	91
23	Dual Regulation of Gene Expression Mediated by Extended MAPK Activation and Salicylic Acid Contributes to Robust Innate Immunity in Arabidopsis thaliana. PLoS Genetics, 2013, 9, e1004015.	1.5	208
24	BR-SIGNALING KINASE1 Physically Associates with FLAGELLIN SENSING2 and Regulates Plant Innate Immunity in <i>Arabidopsis</i> Å. Plant Cell, 2013, 25, 1143-1157.	3.1	212
25	Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes. PLoS ONE, 2013, 8, e58992.	1.1	54
26	Pattern-Triggered Immunity Suppresses Programmed Cell Death Triggered by Fumonisin B1. PLoS ONE, 2013, 8, e60769.	1.1	30
27	Membrane microdomain may be a platform for immune signaling. Plant Signaling and Behavior, 2012, 7, 454-456.	1.2	15
28	Activation of the <i>Arabidopsis thaliana</i> Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22. Molecular Plant-Microbe Interactions, 2012, 25, 471-480.	1.4	123
29	An efficient <i>Agrobacterium</i> â€mediated transient transformation of Arabidopsis. Plant Journal, 2012, 69, 713-719.	2.8	95
30	The peptide growth factor, phytosulfokine, attenuates patternâ€ŧriggered immunity. Plant Journal, 2012, 71, 194-204.	2.8	128
31	<i>Arabidopsis</i> lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19824-19829.	3.3	442
32	CO2-mediated changes of plant traits and their effects on herbivores are determined by leaf age. Ecological Entomology, 2011, 36, 1-13.	1.1	17
33	CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant Journal, 2011, 67, 1029-1041.	2.8	244
34	Physical association of patternâ€ŧriggered immunity (PTI) and effectorâ€ŧriggered immunity (ETI) immune receptors in Arabidopsis. Molecular Plant Pathology, 2011, 12, 702-708.	2.0	91
35	Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. Journal of Experimental Botany, 2011, 62, 2117-2129.	2.4	39
36	Physical Association of Arabidopsis Hypersensitive Induced Reaction Proteins (HIRs) with the Immune Receptor RPS2. Journal of Biological Chemistry, 2011, 286, 31297-31307.	1.6	94

#	Article	IF	CITATIONS
37	Purification of Resistance Protein Complexes Using a Biotinylated Affinity (HPB) Tag. Methods in Molecular Biology, 2011, 712, 21-30.	0.4	3
38	A Putative RNA-Binding Protein Positively Regulates Salicylic Acid–Mediated Immunity in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1573-1583.	1.4	45
39	Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 2010, 13, 459-465.	3.5	705
40	Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling. PLoS Pathogens, 2010, 6, e1001011.	2.1	110
41	Endosome-Associated CRT1 Functions Early in <i>Resistance</i> Gene–Mediated Defense Signaling in <i>Arabidopsis</i> and Tobacco. Plant Cell, 2010, 22, 918-936.	3.1	55
42	Understanding the Plant Immune System. Molecular Plant-Microbe Interactions, 2010, 23, 1531-1536.	1.4	212
43	Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae. PLoS Pathogens, 2009, 5, e1000301.	2.1	242
44	Network Properties of Robust Immunity in Plants. PLoS Genetics, 2009, 5, e1000772.	1.5	489
45	Purification of lowâ€abundance Arabidopsis plasmaâ€membrane protein complexes and identification of candidate components. Plant Journal, 2009, 57, 932-944.	2.8	85
46	Overview of mRNA Expression Profiling Using DNA Microarrays. Current Protocols in Molecular Biology, 2009, 85, Unit 22.4.	2.9	14
47	Pattern Discovery in Expression Profiling Data. Current Protocols in Molecular Biology, 2009, 85, Unit 22.5.	2.9	8
48	Arabidopsis defense response against Pseudomonas syringae - Effects of major regulatory genes and the impact of coronatine. , 2009, , .		0
49	Interplay between MAMPâ€ŧriggered and SAâ€mediated defense responses. Plant Journal, 2008, 53, 763-775.	2.8	318
50	Unsupervised reduction of random noise in complex data by a row-specific, sorted principal component-guided method. BMC Bioinformatics, 2008, 9, 508.	1.2	3
51	The interplay between MAMP and SA signaling. Plant Signaling and Behavior, 2008, 3, 359-361.	1.2	33
52	Natural Variation in RPS2-Mediated Resistance among Arabidopsis Accessions: Correlation between Gene Expression Profiles and Phenotypic Responses. Plant Cell, 2008, 19, 4046-4060.	3.1	37
53	The Genetic Network Controlling the <i>Arabidopsis</i> Transcriptional Response to <i>Pseudomonas syringae</i> pv. <i>maculicola</i> : Roles of Major Regulators and the Phytotoxin Coronatine. Molecular Plant-Microbe Interactions, 2008, 21, 1408-1420.	1.4	64
54	Natural Variation among Arabidopsis thaliana Accessions for Transcriptome Response to Exogenous Salicylic Acid. Plant Cell, 2007, 19, 2099-2110.	3.1	101

#	Article	IF	CITATIONS
55	A high-performance, small-scale microarray for expression profiling of many samples in Arabidopsis-pathogen studies. Plant Journal, 2007, 49, 565-577.	2.8	51
56	Expression profiles as detailed snapshots of biological states. Transgenic Research, 2007, 16, 399-403.	1.3	2
57	Pattern Discovery in Expression Profiling Data. Current Protocols in Molecular Biology, 2005, 69, Unit 22.5.	2.9	1
58	A global view of defense gene expression regulation – a highly interconnected signaling network. Current Opinion in Plant Biology, 2004, 7, 506-511.	3.5	133
59	Overview of m RNA Expression Profiling Using Microarrays. Current Protocols in Molecular Biology, 2004, 67, Unit 22.4.	2.9	3
60	Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant Journal, 2003, 34, 217-228.	2.8	466
61	Direct delivery of bacterial avirulence proteins into resistant Arabidopsis protoplasts leads to hypersensitive cell death. Plant Journal, 2003, 33, 131-137.	2.8	35
62	Local Context Finder (LCF) reveals multidimensional relationships among mRNA expression profiles of Arabidopsis responding to pathogen infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10842-10847.	3.3	19
63	Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas syringae Â[W]. Plant Cell, 2003, 15, 317-330.	3.1	641
64	The Arabidopsis Thaliana-Pseudomonas Syringae Interaction. The Arabidopsis Book, 2002, 1, e0039.	0.5	421
65	A High-Throughput Arabidopsis Reverse Genetics System. Plant Cell, 2002, 14, 2985-2994.	3.1	873
66	A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science, 2002, 296, 92-100.	6.0	2,866
67	The Pseudomonas syringae avrRpt2 Gene Product Promotes Pathogen Virulence from Inside Plant Cells. Molecular Plant-Microbe Interactions, 2000, 13, 1312-1321.	1.4	122
68	Mutational Analysis of the Arabidopsis Nucleotide Binding Site–Leucine-Rich Repeat Resistance Gene RPS2. Plant Cell, 2000, 12, 2541-2554.	3.1	166
69	Eukaryotic Fatty Acylation Drives Plasma Membrane Targeting and Enhances Function of Several Type III Effector Proteins from Pseudomonas syringae. Cell, 2000, 101, 353-363.	13.5	308
70	The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell, 1994, 78, 1089-1099.	13.5	689