
Marzena BiaÅ,ek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9060703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composition, hydrogen bonding and viscoelastic properties correlation for ethylene/α,ω-alkenol copolymers. Polymer, 2022, 251, 124913.	3.8	Ο
2	Ring opening polymerization of $\hat{I}\mu$ -caprolactone initiated by titanium and vanadium complexes of ONO-type schiff base ligand. Journal of Polymer Research, 2021, 28, 1.	2.4	9
3	Ethylene homo- and copolymerization catalyzed by vanadium, zirconium, and titanium complexes having potentially tridentate Schiff base ligands. Journal of Catalysis, 2021, 400, 184-194.	6.2	10
4	Copolymerization of Ethylene with Selected Vinyl Monomers Catalyzed by Group 4 Metal and Vanadium Complexes with Multidentate Ligands: A Short Review. Polymers, 2021, 13, 4456.	4.5	5
5	Homopolymerization of styrenic monomers and their copolymerization with ethylene using group 4 nonâ€metallocene catalysts. Journal of Applied Polymer Science, 2020, 137, 49349.	2.6	2
6	Effective copolymerization of ethylene with α,ï‰-alkenols and homopolymerization of α,ï‰-alkenols catalyzed by aminophenolate zirconium complex. Reactive and Functional Polymers, 2019, 137, 11-20.	4.1	6
7	Effect of AlR3 (R = Me, Et, iBu) addition on the composition and microstructure of ethylene/1-olefin copolymers made with post-metallocene complexes of group 4 elements. Polymer Journal, 2019, 51, 19-29.	2.7	7
8	Dichlorovanadium(IV) diamine-bis(phenolate) complexes for ethylene (co)polymerization and 1-olefin isospecific polymerization. Journal of Catalysis, 2018, 362, 65-73.	6.2	14
9	Synthesis and structural characterization of ethylene copolymers containing double-decker silsesquioxane as pendant groups and cross-linkage sites by coordinative copolymerization. European Polymer Journal, 2018, 100, 187-199.	5.4	11
10	Tri-alkenyl polyhedral oligomeric silsesquioxanes as comonomers and active center modifiers in ethylene copolymerization catalyzed by bis(phenoxy-imine) Ti, Zr, V and V salen-type complexes. Applied Catalysis A: General, 2018, 567, 122-131.	4.3	8
11	Synthesis and catalytic properties for olefin polymerization of new vanadium complexes containing silsesquioxane ligands with different denticity. Polymer International, 2017, 66, 960-967.	3.1	11
12	Polypropylene and poly(ethylene- <i>co</i> -1-octene) effective synthesis with diamine-bis(phenolate) complexes: Effect of complex structure on catalyst activity and product microstructure. Journal of Polymer Science Part A, 2017, 55, 2467-2476.	2.3	9
13	Ethylene/POSS copolymerization behavior of postmetallocene catalysts and copolymer characteristics. Journal of Polymer Science Part A, 2017, 55, 3918-3934.	2.3	12
14	Synthesis and olefin homo- and copolymerization behavior of new vanadium complexes bearing [OSSO]-type ligands. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 259-273.	1.7	3
15	Novel diamine-bis(phenolate) Ti(IV) complexes – tuning the complex structure to control catalytic properties in α-olefin polymerization. Applied Catalysis A: General, 2016, 525, 137-144.	4.3	7
16	Synthesis and catalytic performance in ethylene and 1-octene polymerization of chlorotitanium(IV) silsesquioxane complexes. Effect of increasing ligand denticity and type of nonreactive organic substituents. European Polymer Journal, 2016, 79, 121-131.	5.4	7
17	Synthesis and catalytic behavior in olefin polymerization of bimetallic titanium(IV) silsesquioxane complex and its polymeric counterpart. Polimery, 2016, 61, 591-599.	0.7	1
18	Synthesis, characterization and catalytic properties for olefin polymerization of two new dimeric zirconium(IV) complexes having diamine-bis(phenolate) and chloride ligands. Applied Catalysis A: General, 2015, 503, 26-33.	4.3	15

Marzena BiaÅ,ek

#	Article	IF	CITATIONS
19	2,4-Di-tert-butyl-6-({[2-(dimethylamino)ethyl](2-hydroxybenzyl)amino}methyl)phenol. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o678-o678.	0.2	1
20	Oxovanadium(IV) complexes with [ONNO]-chelating ligands as catalysts for ethylene homo- and copolymerization. Journal of Polymer Research, 2014, 21, 1.	2.4	9
21	Olefin polymerization and copolymerization by complexes bearing [ONNO]-Type salan ligands: Effect of ligand structure and metal type (titanium, zirconium, and vanadium). Journal of Polymer Science Part A, 2014, 52, 2111-2123.	2.3	13
22	A comparative study on the polymerization of 1-octene promoted by vanadium and titanium complexes supported by phenoxyimine and salen type ligands. Journal of Polymer Research, 2013, 20, 1.	2.4	11
23	Ethylene/1-olefin copolymerization behaviour of vanadium and titanium complexes bearing salen-type ligand. Polymer Bulletin, 2013, 70, 1499-1517.	3.3	15
24	Synthesis, characterization and ethylene polymerization by metallasilsesquioxane. Polymers for Advanced Technologies, 2013, 24, 441-445.	3.2	9
25	Synthesis and catalytic studies of Ti-anchored disilanol isobutyl-POSS/alkylaluminum system. Journal of Molecular Catalysis A, 2012, 361-362, 17-28.	4.8	6
26	Titanium-biphenoxide catalysts for ethylene polymerization. Journal of Polymer Research, 2012, 19, 1.	2.4	3
27	A supported titanium postmetallocene catalyst: Effect of selected conditions on ethylene polymerization. Journal of Applied Polymer Science, 2012, 123, 1848-1852.	2.6	2
28	Ethylene polymerization with FI complexes having novel phenoxyâ€imine ligands: Effect of metal type and complex immobilization. Journal of Polymer Science Part A, 2011, 49, 1644-1654.	2.3	10
29	Vanadium complex with tetradentate [O,N,N,O] ligand supported on magnesium type carrier for ethylene homopolymerization and copolymerization. Journal of Polymer Science Part A, 2010, 48, 471-478.	2.3	6
30	Effect of catalyst composition on chainâ€endâ€group of polyethylene produced by salenâ€ŧype complexes of titanium, zirconium, and vanadium. Journal of Polymer Science Part A, 2010, 48, 3209-3214.	2.3	22
31	Transition metal complexes of tetradentate and bidentate Schiff bases as catalysts for ethylene polymerization: Effect of transition metal and cocatalyst. Journal of Polymer Science Part A, 2009, 47, 565-575.	2.3	30
32	Ethylenebis(5â€chlorosalicylideneiminato)vanadium dichloride immobilized on MgCl ₂ â€based supports as a highly effective precursor for ethylene polymerization. Journal of Polymer Science Part A, 2009, 47, 3480-3489.	2.3	15
33	Chlorotitanium (IV) tetradentate Schiffâ€base complex immobilized on inorganic supports: Support type and other factors having effect on ethylene polymerization activity. Journal of Polymer Science Part A, 2009, 47, 4811-4821.	2.3	9
34	Titanium (IV) chloride complexes with salen ligands supported on magnesium carrier: Synthesis and use in ethylene polymerization. Journal of Polymer Science Part A, 2009, 47, 6693-6703.	2.3	10
35	Dichlorovanadium (IV) complexes with salenâ€type ligands for ethylene polymerization. Journal of Polymer Science Part A, 2008, 46, 6940-6949.	2.3	51
36	(Co)polymerisation Behaviour of Supported Metallocene Catalysts: Carrier Effect. Macromolecular Chemistry and Physics, 2006, 207, 1651-1660.	2.2	9

Marzena BiaÅ,ek

#	Article	IF	CITATIONS
37	Studies of structural composition distribution heterogeneity in ethylene/1-hexene copolymers using thermal fractionation technique (SSA). Thermochimica Acta, 2005, 429, 149-154.	2.7	27
38	(Co)polymerization behavior of supported metallocene catalysts. I. Ligand and substituent effect. Journal of Polymer Science Part A, 2005, 43, 5562-5570.	2.3	10
39	Copolymerization of ethylene with 1-hexene over metallocene catalyst supported on complex of magnesium chloride with tetrahydrofuran. Journal of Polymer Science Part A, 2004, 42, 2512-2519.	2.3	22
40	Microstructure of ethylene-1-hexene and ethylene-1-octene copolymers obtained over Ziegler–Natta catalysts supported on MgCl 2 (THF) 2. Polymer, 2001, 42, 2289-2297.	3.8	43
41	Effect of hydrogen on the ethylene polymerization process over Ziegler-Natta catalysts supported on MgCl2(THF)2. I. Studies of the chain-transfer reaction. Journal of Applied Polymer Science, 2001, 79, 356-360.	2.6	18
42	Effect of hydrogen on the ethylene polymerization process over Ziegler-Natta catalysts supported on MgCl2(THF)2. II. Kinetic studies. Journal of Applied Polymer Science, 2001, 79, 361-365.	2.6	8
43	Effect of hydrogen on the ethylene polymerization process over Ziegler–Natta catalysts supported on MgCl2(THF)2. I. Studies of the chainâ€ŧransfer reaction. Journal of Applied Polymer Science, 2001, 79, 356-360.	2.6	1
44	The effect of the comonomer on the copolymerization of ethylene with long chain α-olefins using Ziegler–Natta catalysts supported on MgCl2(THF)2. Polymer, 2000, 41, 7899-7904.	3.8	47
45	Organometallic vanadium-based heterogeneous catalysts for ethylene polymerization. Study of the deactivation process. Macromolecular Rapid Communications, 1998, 19, 163-166.	3.9	27
46	Vanadium-based Ziegler-Natta catalyst supported on MgCl2(THF)2 for ethylene polymerization. Macromolecular Rapid Communications, 1996, 17, 253-260.	3.9	34