
Cordian Beyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9060666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fear and food: Anxietyâ€like behavior and the susceptibility to weight loss in an activityâ€based anorexia rat model. Clinical and Translational Science, 2022, 15, 889-898.	1.5	9
2	Transient Focal Cerebral Ischemia Leads to miRNA Alterations in Different Brain Regions, Blood Serum, Liver, and Spleen. International Journal of Molecular Sciences, 2022, 23, 161.	1.8	7
3	Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury. Life Sciences, 2022, 304, 120726.	2.0	3
4	Alteration of miRNA Biogenesis Regulating Proteins in the Human Microglial Cell Line HMC-3 After Ischemic Stress. Molecular Neurobiology, 2021, 58, 1535-1549.	1.9	6
5	Gut microbiota and brain alterations in a translational anorexia nervosa rat model. Journal of Psychiatric Research, 2021, 133, 156-165.	1.5	21
6	Inflammatory Responses of Astrocytes Are Independent from Lipocalin 2. Journal of Molecular Neuroscience, 2021, 71, 933-942.	1.1	7
7	Brain inflammasomes in depression. , 2021, , 139-147.		1
8	Long-Term Glucose Starvation Induces Inflammatory Responses and Phenotype Switch in Primary Cortical Rat Astrocytes. Journal of Molecular Neuroscience, 2021, 71, 2368-2382.	1.1	17
9	The effect of female sex hormones on Hsp27 phosphorylation and histological changes in prefrontal cortex after tMCAO. Pathology Research and Practice, 2021, 221, 153415.	1.0	8
10	Expression and Cell Type-specific Localization of Inflammasome Sensors in the Spinal Cord of SOD1(G93A) Mice and Sporadic Amyotrophic lateral sclerosis Patients. Neuroscience, 2021, 463, 288-302.	1.1	8
11	G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Molecular Neurobiology, 2021, 58, 4588-4614.	1.9	9
12	Aggregated Tau-PHF6 (VQIVYK) Potentiates NLRP3 Inflammasome Expression and Autophagy in Human Microglial Cells. Cells, 2021, 10, 1652.	1.8	26
13	CXCL12 inhibits inflammasome activation in LPS-stimulated BV2 cells. Brain Research, 2021, 1763, 147446.	1.1	10
14	Lipocalin 2 as a Putative Modulator of Local Inflammatory Processes in the Spinal Cord and Component of Organ Cross talk After Spinal Cord Injury. Molecular Neurobiology, 2021, 58, 5907-5919.	1.9	8
15	Regulation of Inflammasomes by Application of Omega-3 Polyunsaturated Fatty Acids in a Spinal Cord Injury Model. Cells, 2021, 10, 3147.	1.8	10
16	Brain Volume Loss, Astrocyte Reduction, and Inflammation in Anorexia Nervosa. Advances in Neurobiology, 2021, 26, 283-313.	1.3	4
17	Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model. Metabolic Brain Disease, 2020, 35, 353-362.	1.4	33
18	Gonadal Hormones E2 and P Mitigate Cerebral Ischemia-Induced Upregulation of the AIM2 and NLRC4 Inflammasomes in Rats. International Journal of Molecular Sciences, 2020, 21, 4795.	1.8	29

#	Article	IF	CITATIONS
19	A Fatal Alliance between Microglia, Inflammasomes, and Central Pain. International Journal of Molecular Sciences, 2020, 21, 3764.	1.8	17
20	NLRP3 Depletion Fails to Mitigate Inflammation but Restores Diminished Phagocytosis in BV-2 Cells After In Vitro Hypoxia. Molecular Neurobiology, 2020, 57, 2588-2599.	1.9	13
21	Estrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke. Iranian Journal of Basic Medical Sciences, 2020, 23, 1346-1352.	1.0	11
22	Presence of The NLRP3 Inflammasome Components in Semen of Varicocele Patients. International Journal of Fertility & Sterility, 2020, 14, 46-50.	0.2	11
23	Modulatory effect of 17β-estradiol on myeloid cell infiltration into the male rat brain after ischemic stroke. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105667.	1.2	5
24	G-Protein-Coupled Receptor Gpr17 Expression in Two Multiple Sclerosis Remyelination Models. Molecular Neurobiology, 2019, 56, 1109-1123.	1.9	27
25	Blocking Inflammasome Activation Caused by β-Amyloid Peptide (Aβ) and Islet Amyloid Polypeptide (IAPP) through an IAPP Mimic. ACS Chemical Neuroscience, 2019, 10, 3703-3717.	1.7	16
26	The protective effect of bone marrow mesenchymal stem cells in a rat model of ischemic stroke via reducing the C-Jun N-terminal kinase expression. Pathology Research and Practice, 2019, 215, 152519.	1.0	26
27	Laquinimod Supports Remyelination in Non-Supportive Environments. Cells, 2019, 8, 1363.	1.8	13
28	Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase. Brain Research, 2019, 1723, 146401.	1.1	34
29	Water-Soluble Cuprizone Derivative: Synthesis, Characterization, and in Vitro Studies. ACS Omega, 2019, 4, 1685-1689.	1.6	6
30	Expression of Translocator Protein and [18F]-GE180 Ligand Uptake in Multiple Sclerosis Animal Models. Cells, 2019, 8, 94.	1.8	32
31	EPO regulates neuroprotective Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) family members GRINA and FAIM2 after cerebral ischemia-reperfusion injury. Experimental Neurology, 2019, 320, 112978.	2.0	22
32	The reduction of astrocytes and brain volume loss in anorexia nervosa—the impact of starvation and refeeding in a rodent model. Translational Psychiatry, 2019, 9, 159.	2.4	43
33	Oligodendrocyte degeneration and concomitant microglia activation directs peripheral immune cells into the forebrain. Neurochemistry International, 2019, 126, 139-153.	1.9	17
34	Hypoxia Induces Astrocyte-Derived Lipocalin-2 in Ischemic Stroke. International Journal of Molecular Sciences, 2019, 20, 1271.	1.8	40
35	Mitochondrial Impairment in Oligodendroglial Cells Induces Cytokine Expression and Signaling. Journal of Molecular Neuroscience, 2019, 67, 265-275.	1.1	13
36	Exogenous testosterone and the monoamine-oxidase A polymorphism influence anger, aggression and neural responses to provocation in males. Neuropharmacology, 2019, 156, 107491.	2.0	29

#	Article	IF	CITATIONS
37	The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4. Cellular and Molecular Life Sciences, 2019, 76, 523-537.	2.4	50
38	Cuprizoneâ€induced graded oligodendrocyte vulnerability is regulated by the transcription factor DNA damageâ€inducible transcript 3. Glia, 2019, 67, 263-276.	2.5	31
39	Effect of Intrastriatal 6-OHDA Lesions on Extrastriatal Brain Structures in the Mouse. Molecular Neurobiology, 2018, 55, 4240-4252.	1.9	24
40	Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model. Metabolic Brain Disease, 2018, 33, 1229-1242.	1.4	24
41	Estrogen serum concentration affects blood immune cell composition and polarization in human females under controlled ovarian stimulation. Journal of Steroid Biochemistry and Molecular Biology, 2018, 178, 340-347.	1.2	28
42	Neurodegeneration and <scp>NLRP3</scp> inflammasome expression in the anterior thalamus of <scp>SOD1(G93A) ALS</scp> mice. Brain Pathology, 2018, 28, 14-27.	2.1	50
43	Brain inflammasomes in stroke and depressive disorders: Regulation by oestrogen. Journal of Neuroendocrinology, 2018, 30, e12482.	1.2	29
44	Estrogen Attenuates Local Inflammasome Expression and Activation after Spinal Cord Injury. Molecular Neurobiology, 2018, 55, 1364-1375.	1.9	98
45	Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats. World Journal of Biological Psychiatry, 2018, 19, 225-235.	1.3	49
46	Establishment of a chronic activity-based anorexia rat model. Journal of Neuroscience Methods, 2018, 293, 191-198.	1.3	28
47	Chemical hypoxiaâ€induced integrated stress response activation in oligodendrocytes is mediated by the transcription factor nuclear factor (erythroidâ€derived 2)â€like 2 (<scp>NRF</scp> 2). Journal of Neurochemistry, 2018, 144, 285-301.	2.1	14
48	Inflammasome: Its role in traumatic brain and spinal cord injury. Journal of Cellular Physiology, 2018, 233, 5160-5169.	2.0	186
49	α1-antitrypsin mitigates NLRP3-inflammasome activation in amyloid β1–42-stimulated murine astrocytes. Journal of Neuroinflammation, 2018, 15, 282.	3.1	53
50	Impact of steroid hormones E2 and P on the NLRP3/ASC/Casp1 axis in primary mouse astroglia and BV-2 cells after in vitro hypoxia. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 18-26.	1.2	39
51	Role of Steroid Therapy after Ischemic Stroke by n-Methyl-d-Aspartate Receptor Gene Regulation. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 3066-3075.	0.7	29
52	Nrf2 Signaling in Sodium Azide-Treated Oligodendrocytes Restores Mitochondrial Functions. Journal of Molecular Neuroscience, 2018, 66, 229-237.	1.1	11
53	Lipid Peroxidation and Its Role in the Expression of NLRP1a and NLRP3 Genes in Testicular Tissue of Male Rats: a Model of Spinal Cord Injury. Iranian Biomedical Journal, 2018, 22, 151-9.	0.4	15
54	Upregulation and phosphorylation of HspB1/Hsp25 and HspB5/αB-crystallin after transient middle cerebral artery occlusion in rats. Cell Stress and Chaperones, 2017, 22, 653-663.	1.2	15

#	Article	IF	CITATIONS
55	Prenatal transplantation of epidermal neural crest stem cells in malformation of cortical development mouse model. Microscopy Research and Technique, 2017, 80, 394-405.	1.2	5
56	Administration of 17β-Estradiol Improves Motoneuron Survival and Down-regulates Inflammasome Activation in Male SOD1(G93A) ALS Mice. Molecular Neurobiology, 2017, 54, 8429-8443.	1.9	51
57	Combination of cuprizone and experimental autoimmune encephalomyelitis to study inflammatory brain lesion formation and progression. Glia, 2017, 65, 1900-1913.	2.5	56
58	Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. International Immunopharmacology, 2017, 51, 131-139.	1.7	118
59	Role of stromal derived factor-1a (SDF-1a) for spermatogenesis of busulfan-injured rats. Reproductive Toxicology, 2017, 73, 142-148.	1.3	10
60	Effects of different Sertoli cell types on the maintenance of adult spermatogonial stem cells in vitro. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 752-758.	0.7	8
61	Gonadal steroids block the calpain-1-dependent intrinsic pathway of apoptosis in an experimental rat stroke model. Neurological Research, 2017, 39, 54-64.	0.6	26
62	Impact of 17beta-estradiol and progesterone on inflammatory and apoptotic microRNA expression after ischemia in a rat model. Journal of Steroid Biochemistry and Molecular Biology, 2017, 167, 126-134.	1.2	36
63	Protective effects of erythropoietin against cuprizone-induced oxidative stress and demyelination in the mouse corpus callosum. Iranian Journal of Basic Medical Sciences, 2017, 20, 886-893.	1.0	10
64	Memory impairment is associated with the loss of regular oestrous cycle and plasma oestradiol levels in an activity-based anorexia animal model. World Journal of Biological Psychiatry, 2016, 17, 274-284.	1.3	27
65	Thalamus Degeneration and Inflammation in Two Distinct Multiple Sclerosis Animal Models. Journal of Molecular Neuroscience, 2016, 60, 102-114.	1.1	24
66	Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia, 2016, 64, 2219-2230.	2.5	80
67	Acute axonal damage in three different murine models of multiple sclerosis: A comparative approach. Brain Research, 2016, 1650, 125-133.	1.1	38
68	Absence of CCL2 and CCL3 Ameliorates Central Nervous System Grey Matter But Not White Matter Demyelination in the Presence of an Intact Blood–Brain Barrier. Molecular Neurobiology, 2016, 53, 1551-1564.	1.9	29
69	Activation and Regulation of NLRP3 Inflammasome by Intrathecal Application of SDF-1a in a Spinal Cord Injury Model. Molecular Neurobiology, 2016, 53, 3063-3075.	1.9	129
70	Neurodegeneration Triggers Peripheral Immune Cell Recruitment into the Forebrain. Journal of Neuroscience, 2016, 36, 1410-1415.	1.7	59
71	Regulatory effect of triiodothyronine on brain myelination and astrogliosis after cuprizone-induced demyelination in mice. Metabolic Brain Disease, 2016, 31, 425-433.	1.4	28
72	Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neuroscience and Biobehavioral Reviews, 2016, 67, 125-136.	2.9	28

#	Article	IF	CITATIONS
73	Poststroke Inflammasome Expression and Regulation in the Peri-Infarct Area by Gonadal Steroids after Transient Focal Ischemia in the Rat Brain. Neuroendocrinology, 2016, 103, 460-475.	1.2	96
74	Lesion Expansion in Experimental Demyelination Animal Models and Multiple Sclerosis Lesions. Molecular Neurobiology, 2016, 53, 4905-4917.	1.9	13
75	Effect of Progesterone Therapy on TNF-α and iNOS Gene Expression in Spinal Cord Injury Model. Acta Medica Iranica, 2016, 54, 345-51.	0.8	10
76	Effect of Estrogen Therapy on TNF-α and iNOS Gene Expression in Spinal Cord Injury Model. Acta Medica Iranica, 2016, 54, 296-301.	0.8	13
77	NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia, 2015, 63, 2260-2273.	2.5	201
78	Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. Journal of Neuroimmunology, 2015, 278, 200-211.	1.1	76
79	Thalamus pathology in multiple sclerosis: from biology to clinical application. Cellular and Molecular Life Sciences, 2015, 72, 1127-1147.	2.4	54
80	Highâ€level expression and purification of soluble bioactive recombinant human heparinâ€binding epidermal growth factor in <i>Escherichia coli</i> . Cell Biology International, 2015, 39, 858-864.	1.4	7
81	CXCL10 Triggers Early Microglial Activation in the Cuprizone Model. Journal of Immunology, 2015, 194, 3400-3413.	0.4	115
82	Anatomical Distribution of Cuprizone-Induced Lesions in C57BL6 Mice. Journal of Molecular Neuroscience, 2015, 57, 166-175.	1.1	73
83	Comparative Analysis of Gonadal Steroid-Mediated Neuroprotection after Transient Focal Ischemia in Rats: Route of Application and Substrate Composition. Journal of Molecular Neuroscience, 2015, 56, 12-16.	1.1	5
84	Inflammasomes are neuroprotective targets for sex steroids. Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 135-143.	1.2	31
85	Homing of allogeneic nestin-positive hair follicle-associated pluripotent stem cells after maternal transplantation in experimental model of cortical dysplasia. Biochemistry and Cell Biology, 2015, 93, 619-625.	0.9	6
86	Gonadal steroid hormones as therapeutic tools for brain trauma: The time is ripe for more courageous clinical trials to get into emergency medicine. Journal of Steroid Biochemistry and Molecular Biology, 2015, 146, 1-2.	1.2	3
87	Regulation of brain microglia by female gonadal steroids. Journal of Steroid Biochemistry and Molecular Biology, 2015, 146, 3-14.	1.2	90
88	The sphingosine 1â€phosphate receptor agonist <scp>FTY</scp> 720 is neuroprotective after cuprizoneâ€induced <scp>CNS</scp> demyelination. British Journal of Pharmacology, 2015, 172, 80-92.	2.7	92
89	Short-Term Cuprizone Feeding Verifies N-Acetylaspartate Quantification as a Marker of Neurodegeneration. Journal of Molecular Neuroscience, 2015, 55, 733-748.	1.1	20
90	Activation of Nuclear Receptors RAR, RXR, and LXR Does Not Reduce Cuprizone-Induced Demyelination in Mice. Nuclear Receptor Research, 2015, 2, .	2.5	1

#	Article	IF	CITATIONS
91	Hypoxia-Induced Gene Expression of Aquaporin-4, Cyclooxygenase-2 and Hypoxia-Inducible Factor 1α in Rat Cortical Astroglia Is Inhibited by 17β-Estradiol and Progesterone. Neuroendocrinology, 2014, 99, 156-167.	1.2	36
92	Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Medical Gas Research, 2014, 4, 11.	1.2	27
93	Astroglial Redistribution of Aquaporin 4 During Spongy Degeneration in a Canavan Disease Mouse Model. Journal of Molecular Neuroscience, 2014, 53, 22-30.	1.1	15
94	Regulation of Hypoxia-Induced Inflammatory Responses and M1-M2 Phenotype Switch of Primary Rat Microglia by Sex Steroids. Journal of Molecular Neuroscience, 2014, 52, 277-285.	1.1	80
95	Sex steroid hormone-mediated functional regulation of microglia-like BV-2 cells during hypoxia. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 195-205.	1.2	57
96	Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 71-81.	1.2	104
97	Short-Term Cuprizone Feeding Induces Selective Amino Acid Deprivation with Concomitant Activation of an Integrated Stress Response in Oligodendrocytes. Cellular and Molecular Neurobiology, 2013, 33, 1087-1098.	1.7	51
98	An Improved Protocol for Isolation and Culturing of Mouse Spermatogonial Stem Cells. Cellular Reprogramming, 2013, 15, 329-336.	0.5	21
99	Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Annals of Anatomy, 2013, 195, 415-423.	1.0	37
100	Comparison of infarct volume and behavioral deficit in Wistar Kyoto and spontaneously hypertensive rat after transient occlusion of the middle cerebral artery. SpringerPlus, 2013, 2, 414.	1.2	5
101	Regional Heterogeneity of Cuprizone-Induced Demyelination: Topographical Aspects of the Midline of the Corpus Callosum. Journal of Molecular Neuroscience, 2013, 49, 80-88.	1.1	41
102	Cuprizone-Induced Demyelination as a Tool to Study Remyelination and Axonal Protection. Journal of Molecular Neuroscience, 2013, 51, 567-572.	1.1	79
103	Regulation of ecto-5′-nucleotidase (CD73) in cultured cortical astrocytes by different inflammatory factors. Neurochemistry International, 2012, 61, 681-688.	1.9	43
104	Long-term cerebral cortex protection and behavioral stabilization by gonadal steroid hormones after transient focal hypoxia. Journal of Steroid Biochemistry and Molecular Biology, 2012, 131, 10-16.	1.2	43
105	Estrogen and the regulation of mitochondrial structure and function in the brain. Journal of Steroid Biochemistry and Molecular Biology, 2012, 131, 2-9.	1.2	45
106	Steroids in the brain: Regulators of brain plasticity and protectors against neuronal damage. Journal of Steroid Biochemistry and Molecular Biology, 2012, 131, 1.	1.2	3
107	Stromal cell-derived factor-1 alpha (SDF- $1\hat{l}$) improves neural recovery after spinal cord contusion in rats. Brain Research, 2012, 1473, 214-226.	1.1	37
108	Inflammatory Response and Chemokine Expression in the White Matter Corpus Callosum and Gray Matter Cortex Region During Cuprizone-Induced Demyelination. Journal of Molecular Neuroscience, 2012, 48, 66-76.	1.1	113

#	Article	IF	CITATIONS
109	Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 2012, 60, 1468-1480.	2.5	131
110	Sex Steroids Control Neuroinflammatory Processes in the Brain: Relevance for Acute Ischaemia and Degenerative Demyelination. Journal of Neuroendocrinology, 2012, 24, 62-70.	1.2	34
111	Multiple sclerosis: Neuroprotective alliance of estrogen–progesterone and gender. Frontiers in Neuroendocrinology, 2012, 33, 1-16.	2.5	73
112	Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain, Behavior, and Immunity, 2011, 25, 715-726.	2.0	119
113	BLBP-expression in astrocytes during experimental demyelination and in human multiple sclerosis lesions. Brain, Behavior, and Immunity, 2011, 25, 1554-1568.	2.0	69
114	Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats*. Critical Care Medicine, 2011, 39, 1448-1453.	0.4	98
115	Corticosteroids Impair Remyelination in the Corpus Callosum of Cuprizone-Treated Mice. Journal of Neuroendocrinology, 2011, 23, 601-611.	1.2	46
116	Regulation of Choline Acetyltransferase Expression by 17β-Oestradiol in NSC-34 Cells and in the Spinal Cord. Journal of Neuroendocrinology, 2011, 23, 839-848.	1.2	28
117	Expression analysis of the early chemokine response 4Âh after in vitro traumatic brain injury. Inflammation Research, 2011, 60, 379-387.	1.6	18
118	Glial Amyloid Precursor Protein Expression is Restricted to Astrocytes in an Experimental Toxic Model of Multiple Sclerosis. Journal of Molecular Neuroscience, 2011, 43, 268-274.	1,1	23
119	Xenon Enhances LPS-Induced IL-1β Expression in Microglia via the Extracellular Signal-Regulated Kinase 1/2 Pathway. Journal of Molecular Neuroscience, 2011, 45, 48-59.	1.1	18
120	Solulin reduces infarct volume and regulates gene-expression in transient middle cerebral artery occlusion in rats. BMC Neuroscience, 2011, 12, 113.	0.8	28
121	Sex―and brain regionâ€specific role of cytochrome c oxidase in 1â€methylâ€4â€phenylpyridiniumâ€mediated astrocyte vulnerability. Journal of Neuroscience Research, 2011, 89, 2068-2082.	1.3	40
122	Brain Lipid Binding Protein (FABP7) as Modulator of Astrocyte Function. Physiological Research, 2011, 60, S49-S60.	0.4	31
123	Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. Journal of Neuroimmunology, 2010, 229, 169-179.	1.1	65
124	Gender-specific role of mitochondria in the vulnerability of 6-hydroxydopamine-treated mesencephalic neurons. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1178-1188.	0.5	45
125	ADAM12 is expressed by astrocytes during experimental demyelination. Brain Research, 2010, 1326, 1-14.	1.1	29
126	TTC staining of damaged brain areas after MCA occlusion in the rat does not constrict quantitative gene and protein analyses. Journal of Neuroscience Methods, 2010, 187, 84-89.	1.3	93

#	Article	IF	CITATIONS
127	Inflammatory chemokine release of astrocytes <i>in vitro</i> is reduced by allâ€ <i>trans</i> retinoic acid. Journal of Neurochemistry, 2010, 114, 1511-1526.	2.1	40
128	Oestrogen Regulates Mitochondrial Respiratory Chain Enzyme Transcription in the Mouse Spinal Cord. Journal of Neuroendocrinology, 2010, 22, 926-935.	1.2	11
129	Early Formation of a GFAP-Positive Cell Population in the Ventricular Zone during Chicken Brain Development. Cells Tissues Organs, 2010, 191, 57-65.	1.3	8
130	Combined Application of 17-Estradiol and Progesterone Enhance Vascular Endothelial Growth Factor and Surfactant Protein Expression in Cultured Embryonic Lung Cells of Mice. International Journal of Pediatrics (United Kingdom), 2009, 2009, 1-8.	0.2	23
131	Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis. Frontiers in Neuroendocrinology, 2009, 30, 188-200.	2.5	97
132	Gender-related effects of prenatal administration of estrogen and progesterone receptor antagonists on VEGF and surfactant-proteins and on alveolarisation in the developing piglet lung. Early Human Development, 2009, 85, 353-359.	0.8	13
133	Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia. Brain Research, 2009, 1305, 137-149.	1.1	69
134	17βâ€estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia, 2009, 57, 807-814.	2.5	175
135	Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. Journal of Neuroscience Research, 2009, 87, 1343-1355.	1.3	96
136	The cuprizone animal model: new insights into an old story. Acta Neuropathologica, 2009, 118, 723-736.	3.9	415
137	Aquaporin-4 Isoform Expression in the Developing Mouse Nigro-striatal System. Journal of Molecular Neuroscience, 2009, 38, 1-1.	1.1	0
138	Dopamine Regulates the Expression of the Glutamate Transporter GLT1 but Not GLAST in Developing Striatal Astrocytes. Journal of Molecular Neuroscience, 2009, 39, 372-379.	1.1	9
139	Cuprizone Treatment Induces Distinct Demyelination, Astrocytosis, and Microglia Cell Invasion or Proliferation in the Mouse Cerebellum. Cerebellum, 2009, 8, 163-174.	1.4	95
140	Combined 17βâ€Oestradiol and Progesterone Treatment Prevents Neuronal Cell Injury in Cortical but not Midbrain Neurones or Neuroblastoma Cells. Journal of Neuroendocrinology, 2009, 21, 841-849.	1.2	34
141	Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. Journal of Neurochemistry, 2009, 110, 1-11.	2.1	83
142	Selective regulation of growth factor expression in cultured cortical astrocytes by neuro-pathological toxins. Neurochemistry International, 2009, 55, 610-618.	1.9	32
143	Expression of Enzymes Involved in the Prostanoid Metabolism by Cortical Astrocytes after LPS-induced Inflammation. Journal of Molecular Neuroscience, 2008, 34, 177-185.	1.1	46
144	Brain-Region-Specific Astroglial Responses In Vitro After LPS Exposure. Journal of Molecular Neuroscience, 2008, 35, 235-243.	1.1	77

#	Article	IF	CITATIONS
145	Developmental Expression and Regulation of Aromatase- and 5α-Reductase Type 1 mRNA in the Male and Female Mouse Hypothalamus. Journal of Neuroendocrinology, 2008, 10, 267-274.	1.2	62
146	Antiâ€inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytes. Journal of Neurochemistry, 2008, 106, 320-332.	2.1	34
147	Oestrogen Influences on Mitochondrial Gene Expression and Respiratory Chain Activity in Cortical and Mesencephalic Astrocytes. Journal of Neuroendocrinology, 2008, 20, 930-941.	1.2	32
148	Functional alterations of the nigrostriatal dopamine system in estrogen receptor-α knockout (ERKO) mice. Psychoneuroendocrinology, 2008, 33, 832-838.	1.3	46
149	Cender-specific regulation of mitochondrial fusion and fission gene transcription and viability of cortical astrocytes by steroid hormones. Journal of Molecular Endocrinology, 2008, 41, 289-300.	1.1	59
150	Effects of agrin on the expression and distribution of the water channel protein aquaporinâ€4 and volume regulation in cultured astrocytes. European Journal of Neuroscience, 2007, 26, 2109-2118.	1.2	75
151	Oestrogen Regulates the Expression and Function of Dopamine Transporters in Astrocytes of the Nigrostriatal System. Journal of Neuroendocrinology, 2007, 19, 682-690.	1.2	65
152	Oestrogen and Progesterone Reduce Lipopolysaccharide-Induced Expression of Tumour Necrosis Factor-? and Interleukin-18 in Midbrain Astrocytes. Journal of Neuroendocrinology, 2007, 19, 819-822.	1.2	78
153	Effect of hypoxia on the transcription pattern of subunit isoforms and the kinetics of cytochrome coxidase in cortical astrocytes and cerebellar neurons. Journal of Neurochemistry, 2006, 99, 937-951.	2.1	74
154	Estrogen and the development and protection of nigrostriatal dopaminergic neurons: Concerted action of a multitude of signals, protective molecules, and growth factors. Frontiers in Neuroendocrinology, 2006, 27, 376-390.	2.5	73
155	Impact of 17β-estradiol on cytokine-mediated apoptotic effects in primary hippocampal and neocortical cell cultures. Brain Research, 2006, 1116, 64-74.	1.1	29
156	Prenatal Estrogen and Progesterone Deprivation Impairs Alveolar Formation and Fluid Clearance in Newborn Piglets. Pediatric Research, 2006, 60, 60-64.	1.1	38
157	IKK mediates ischemia-induced neuronal death. Nature Medicine, 2005, 11, 1322-1329.	15.2	248
158	Estrogen receptor-? is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia, 2005, 50, 270-275.	2.5	90
159	Developmental expression of MNAR mRNA in the mouse brain. Cell and Tissue Research, 2005, 320, 545-549.	1.5	19
160	Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Molecular Brain Research, 2005, 138, 1-7.	2.5	155
161	BDNF-dependent stimulation of dopamine D5receptor expression in developing striatal astrocytes involves PI3-kinase signaling. Glia, 2004, 46, 284-295.	2.5	21
162	Cellular Strategies of Estrogen-Mediated Neuroprotection During Brain Development. Endocrine, 2003, 21, 3-10.	2.2	46

#	Article	IF	CITATIONS
163	Estrogen regulates tyrosine hydroxylase expression in the neonate mouse midbrain. Journal of Neurobiology, 2003, 54, 638-647.	3.7	84
164	Membrane receptors for oestrogen in the brain. Journal of Neurochemistry, 2003, 87, 545-550.	2.1	74
165	Estradiol Stimulates GDNF Expression in Developing Hypothalamic Neurons. Endocrinology, 2002, 143, 3175-3178.	1.4	50
166	Rapid Stimulation of the PI3-Kinase/Akt Signalling Pathway in Developing Midbrain Neurones by Oestrogen. Journal of Neuroendocrinology, 2002, 14, 73-79.	1.2	102
167	Classical and Nonclassical Estrogen Action in the Developing Midbrain. Hormones and Behavior, 2001, 40, 196-202.	1.0	46
168	Estrogen stimulates brain-derived neurotrophic factor expression in embryonic mouse midbrain neurons through a membrane-mediated and calcium-dependent mechanism. Journal of Neuroscience Research, 2001, 66, 221-230.	1.3	60
169	Developmental regulation of glutamic acid decarboxylase mRNA expression and splicing in the rat striatum by dopamine. Molecular Brain Research, 2000, 81, 19-28.	2.5	26
170	Estrogen and the developing mammalian brain. Anatomy and Embryology, 1999, 199, 379-390.	1.5	242
171	Ontogenetic expression and splicing of estrogen receptor- $\hat{I}\pm$ and \hat{I}^2 mRNA in the rat midbrain. Neuroscience Letters, 1999, 275, 21-24.	1.0	35
172	Expression of estrogen receptor-α and β mRNA in the developing and adult mouse striatum. Neuroscience Letters, 1999, 276, 95-98.	1.0	94
173	Nongenomic effects of oestrogen: embryonic mouse midbrain neurones respond with a rapid release of calcium from intracellular stores. European Journal of Neuroscience, 1998, 10, 255-262.	1.2	127
174	Differentiative Effects of Dopamine on Striatal Neurons Involve Stimulation of the cAMP/PKA Pathway. Molecular and Cellular Neurosciences, 1998, 11, 9-18.	1.0	48
175	Activation of dopaminergic D1 receptors promotes morphogenesis of developing striatal neurons. Neuroscience, 1996, 74, 453-460.	1.1	96
176	Genotype-dependent sex differentiation of dopaminergic neurons in primary cultures of embryonic mouse brain. Developmental Brain Research, 1996, 93, 136-142.	2.1	55
177	Ontogeny of aromatase messenger ribonucleic acid and aromatase activity in the rat midbrain. Molecular Brain Research, 1995, 34, 333-336.	2.5	38
178	Androgens influence sexual differentiation of embryonic mouse hypothalamic aromatase neurons in vitro Endocrinology, 1994, 135, 1220-1226.	1.4	61
179	Dopamine content and metabolism in mesencephalic and diencephalic cell cultures: sex differences and effects of sex steroids. Journal of Neuroscience, 1991, 11, 1325-1333.	1.7	145