Martin R Wilkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9060593/publications.pdf Version: 2024-02-01

MADTIN P WILKING

#	Article	IF	CITATIONS
1	Mendelian randomisation and experimental medicine approaches to interleukin-6 as a drug target in pulmonary arterial hypertension. European Respiratory Journal, 2022, 59, 2002463.	3.1	31
2	Using the Plasma Proteome for Risk Stratifying Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1102-1111.	2.5	35
3	Autoimmunity Is a Significant Feature of Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 81-93.	2.5	9
4	Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1449-1460.	2.5	19
5	Genetic and environmental determinants of diastolic heart function. , 2022, 1, 361-371.		12
6	A systematic review with meta-analysis of biomarkers for detection of pulmonary arterial hypertension. ERJ Open Research, 2022, 8, 00009-2022.	1.1	5
7	Bayesian Inference Associates Rare <i>KDR</i> Variants With Specific Phenotypes in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2021, 14, .	1.6	29
8	The application of â€~omics' to pulmonary arterial hypertension. British Journal of Pharmacology, 2021, 178, 108-120.	2.7	18
9	Hypoxiaâ€induced pulmonary hypertension—Utilizing experiments of nature. British Journal of Pharmacology, 2021, 178, 121-131.	2.7	20
10	Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2021, 57, 2003201.	3.1	25
11	Pulmonary hypertension with 2020 vision. British Journal of Pharmacology, 2021, 178, 3-5.	2.7	Ο
12	miR-150-PTPMT1-cardiolipin signaling in pulmonary arterial hypertension. Molecular Therapy - Nucleic Acids, 2021, 23, 142-153.	2.3	18
13	The pathophysiological role of novel pulmonary arterial hypertension gene <i>SOX17</i> . European Respiratory Journal, 2021, 58, 2004172.	3.1	16
14	Personalized Medicine for Pulmonary Hypertension:. Clinics in Chest Medicine, 2021, 42, 207-216.	0.8	3
15	NHLBI-CMREF Workshop Report on Pulmonary Vascular DiseaseÂClassification. Journal of the American College of Cardiology, 2021, 77, 2040-2052.	1.2	13
16	Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Medicine, 2021, 13, 80.	3.6	43
17	Supplementation with Iron in Pulmonary Arterial Hypertension. Two Randomized Crossover Trials. Annals of the American Thoracic Society, 2021, 18, 981-988.	1.5	28
18	Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency. Chest, 2021, 160, 1442-1458.	0.4	17

#	Article	IF	CITATIONS
19	A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine, 2021, 69, 103444.	2.7	30
20	Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Communications Biology, 2021, 4, 1002.	2.0	3
21	Positioning imatinib for pulmonary arterial hypertension: A phase I/II design comprising dose finding and singleâ€arm efficacy. Pulmonary Circulation, 2021, 11, 1-12.	0.8	5
22	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nature Communications, 2021, 12, 7104.	5.8	21
23	Immunoglobulin-driven Complement Activation Regulates Proinflammatory Remodeling in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 224-239.	2.5	60
24	Characterization of <i>GDF2</i> Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 575-585.	2.5	80
25	Expression Quantitative Trait Locus Mapping in Pulmonary Arterial Hypertension. Genes, 2020, 11, 1247.	1.0	3
26	A population-based phenome-wide association study of cardiac and aortic structure and function. Nature Medicine, 2020, 26, 1654-1662.	15.2	98
27	Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 586-594.	2.5	45
28	Whole-genome sequencing of patients with rare diseases in a national health system. Nature, 2020, 583, 96-102.	13.7	338
29	Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nature Communications, 2020, 11, 1185.	5.8	52
30	Editorial: Pulmonary Hypertension: Mechanisms and Management, History and Future. Frontiers in Medicine, 2020, 7, 125.	1.2	1
31	Deprivation and prognosis in patients with pulmonary arterial hypertension: missing the effect of deprivation on a rare disease?. European Respiratory Journal, 2020, 56, 1902334.	3.1	1
32	Mendelian randomisation analysis of red cell distribution width in pulmonary arterial hypertension. European Respiratory Journal, 2020, 55, 1901486.	3.1	26
33	Pulmonary hypertension: Proteins in the blood. Global Cardiology Science & Practice, 2020, 2020, e202007.	0.3	2
34	The ADAMTS13–VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2019, 53, 1801805.	3.1	31
35	Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: a UK cohort study analysis. European Respiratory Journal, 2019, 53, 1801429.	3.1	31
36	Deep-learning cardiac motion analysis for human survival prediction. Nature Machine Intelligence, 2019, 1, 95-104.	8.3	179

#	Article	IF	CITATIONS
37	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine,the, 2019, 7, 227-238.	5.2	122
38	Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D analysis of cardiac magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2019, 20, 668-676.	0.5	13
39	Reduced plasma levels of small HDL particles transporting fibrinolytic proteins in pulmonary arterial hypertension. Thorax, 2019, 74, 380-389.	2.7	34
40	CLIC4/Arf6 Pathway. Circulation Research, 2019, 124, 52-65.	2.0	36
41	Clinical trial design and new therapies for pulmonary arterial hypertension. European Respiratory Journal, 2019, 53, 1801908.	3.1	142
42	Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight, 2019, 4, .	2.3	69
43	Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nature Communications, 2018, 9, 1416.	5.8	279
44	Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. European Respiratory Journal, 2018, 51, 1700745.	3.1	136
45	Apoptosis Signal-Regulating Kinase 1 Inhibition in Pulmonary Hypertension. Too Much to ASK?. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 286-288.	2.5	4
46	Recent advances in pulmonary arterial hypertension. F1000Research, 2018, 7, 1128.	0.8	27
47	TORward a Molecular Convergence Point in Pulmonary Arterial Hypertension WithÂmTOR. JACC Basic To Translational Science, 2018, 3, 763-765.	1.9	0
48	3′-Deoxy-3′-[18F]Fluorothymidine Positron Emission Tomography Depicts Heterogeneous Proliferation Pathology in Idiopathic Pulmonary Arterial Hypertension Patient Lung. Circulation: Cardiovascular Imaging, 2018, 11, e007402.	1.3	14
49	Loss-of-Function <i>ABCC8</i> Mutations in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2018, 11, e002087.	1.6	62
50	New Therapeutic Approaches in Pulmonary Arterial Hypertension. Circulation, 2018, 137, 2390-2392.	1.6	5
51	Fractal Analysis of Right Ventricular Trabeculae in Pulmonary Hypertension. Radiology, 2018, 288, 386-395.	3.6	23
52	Short-Term Hemodynamic Effects ofÂApelin in Patients With PulmonaryÂArterial Hypertension. JACC Basic To Translational Science, 2018, 3, 176-186.	1.9	34
53	Metabolomic Insights in Pulmonary Arterial Hypertension. Advances in Pulmonary Hypertension, 2018, 17, 103-109.	0.1	2
54	Riociguat: Mode of Action and Clinical Development in Pulmonary Hypertension. Chest, 2017, 151, 468-480.	0.4	79

#	Article	IF	CITATIONS
55	Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology, 2017, 283, 381-390.	3.6	161
56	Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respiratory Medicine,the, 2017, 5, 717-726.	5.2	99
57	Pulmonary arterial hypertension – progress in understanding the disease and prioritizing strategies for drug development. Journal of Internal Medicine, 2017, 282, 129-141.	2.7	21
58	Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Science Translational Medicine, 2017, 9, .	5.8	206
59	Phenotypic Characterization of <i>EIF2AK4</i> Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension. Circulation, 2017, 136, 2022-2033.	1.6	111
60	Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation, 2017, 135, 460-475.	1.6	154
61	Tipifarnib prevents development of hypoxia-induced pulmonary hypertension. Cardiovascular Research, 2017, 113, 276-287.	1.8	16
62	Prof. Almaz A. Aldashev (1953–2016). European Respiratory Journal, 2016, 48, 990-991.	3.1	1
63	Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future. , 2016, 164, 195-203.		37
64	Neutrophil Extracellular Traps Promote Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2078-2087.	1.1	158
65	Intravenous Iron Therapy in Patients with Idiopathic Pulmonary Arterial Hypertension and Iron Deficiency. Pulmonary Circulation, 2015, 5, 466-472.	0.8	79
66	Iron Homeostasis and Pulmonary Hypertension. Circulation Research, 2015, 116, 1680-1690.	2.0	97
67	Pathophysiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation, 2015, 131, 582-590.	1.6	108
68	Use of responder threshold criteria to evaluate the response to treatment in the phase III CHEST-1 study. Journal of Heart and Lung Transplantation, 2015, 34, 348-355.	0.3	13
69	The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature, 2015, 524, 356-360.	13.7	113
70	Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2). European Respiratory Journal, 2015, 45, 1293-1302.	3.1	247
71	Abstract 202: The Role of Neutrophil Extracellular Traps in the Pathogenesis of Pulmonary Hypertension Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
72	Abstract 230: Protein Farnesylation Inhibitor Tipifarnib Prevents Development of Chronic Hypoxia-induced Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0

#	Article	IF	CITATIONS
73	α1-A680T Variant in GUCY1A3 as a Candidate Conferring Protection From Pulmonary Hypertension Among Kyrgyz Highlanders. Circulation: Cardiovascular Genetics, 2014, 7, 920-929.	5.1	23
74	Pulmonary Hypertension: The Value of Experimental Medicine in New Drug Development. Pulmonary Circulation, 2014, 4, 149-150.	0.8	0
75	<i>miR-21</i> /DDAH1 pathway regulates pulmonary vascular responses to hypoxia. Biochemical Journal, 2014, 462, 103-112.	1.7	45
76	Effects of Tetrahydrobiopterin Oral Treatment in Hypoxiaâ€induced Pulmonary Hypertension in Rat. Pulmonary Circulation, 2014, 4, 462-470.	0.8	18
77	Response to Pulmonary Arterial Hypertension Drug Therapies in Patients with Pulmonary Arterial Hypertension and Cardiovascular Risk Factors. Pulmonary Circulation, 2014, 4, 669-678.	0.8	21
78	Aberrant Chloride Intracellular Channel 4 Expression Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 1770-1780.	1.6	63
79	Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension. New England Journal of Medicine, 2013, 369, 319-329.	13.9	1,144
80	Update in Pulmonary Vascular Diseases 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 23-28.	2.5	4
81	Definitions and Diagnosis of Pulmonary Hypertension. Journal of the American College of Cardiology, 2013, 62, D42-D50.	1.2	1,467
82	Reduced MicroRNA-150 Is Associated with Poor Survival in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 294-302.	2.5	153
83	Advancing Clinical Trial Design in Pulmonary Hypertension. Pulmonary Circulation, 2013, 3, 217-225.	0.8	16
84	Supplementation of Iron in Pulmonary Hypertension: Rationale and Design of a Phase II Clinical Trial in Idiopathic Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 100-107.	0.8	32
85	Heterogeneity in Lung ¹⁸ FDG Uptake in Pulmonary Arterial Hypertension. Circulation, 2013, 128, 1214-1224.	1.6	107
86	Pulmonary Hypertension: Biomarkers. Handbook of Experimental Pharmacology, 2013, , 77-103.	0.9	7
87	Pulmonary hypertension: the science behind the disease spectrum. European Respiratory Review, 2012, 21, 19-26.	3.0	72
88	Role of RhoB in the Regulation of Pulmonary Endothelial and Smooth Muscle Cell Responses to Hypoxia. Circulation Research, 2012, 110, 1423-1434.	2.0	77
89	Histone Deacetylation Inhibition in Pulmonary Hypertension. Circulation, 2012, 126, 455-467.	1.6	222
90	Atorvastatin in Pulmonary Arterial Hypertension (APATH) study. European Respiratory Journal, 2012, 40, 67-74.	3.1	53

#	Article	IF	CITATIONS
91	Mechanisms of disease: pulmonary arterial hypertension. Nature Reviews Cardiology, 2011, 8, 443-455.	6.1	605
92	Iron Deficiency and Raised Hepcidin in Idiopathic Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2011, 58, 300-309.	1.2	208
93	Differences in Ventilatory Inefficiency Between Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension. Chest, 2011, 140, 1284-1291.	0.4	93
94	Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Human Mutation, 2011, 32, 1385-1389.	1.1	152
95	Iron deficiency in pulmonary arterial hypertension: a potential therapeutic target. European Respiratory Journal, 2011, 38, 1453-1460.	3.1	97
96	Red cell distribution width outperforms other potential circulating biomarkers in predicting survival in idiopathic pulmonary arterial hypertension. Heart, 2011, 97, 1054-1060.	1.2	154
97	Phosphodiesterase Inhibitors in the Treatment of Pulmonary Hypertension. , 2011, , 1477-1485.		1
98	S98 Ventilatory efficiency in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: physiological differences and implications for disease-specific end-points. Thorax, 2010, 65, A45-A46.	2.7	0
99	Basic Science of Pulmonary Arterial Hypertension for Clinicians. Circulation, 2010, 121, 2045-2066.	1.6	440
100	Proteomic Analysis of Lung Tissues From Patients With Pulmonary Arterial Hypertension. Circulation, 2010, 122, 2058-2067.	1.6	109
101	Simvastatin as a Treatment for Pulmonary Hypertension Trial. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1106-1113.	2.5	112
102	Simvastatin and sildenafil combine to attenuate pulmonary hypertension. European Respiratory Journal, 2009, 34, 948-957.	3.1	49
103	Response to Letter Regarding Article, "Circulating Endothelial Progenitor Cells in Patients With Eisenmenger Syndrome and Idiopathic Pulmonary Arterial Hypertension― Circulation, 2009, 119, .	1.6	2
104	Therapeutic targets in pulmonary arterial hypertension. , 2009, 121, 69-88.		80
105	Emerging Concepts and Translational Priorities in Pulmonary Arterial Hypertension. Circulation, 2008, 118, 1486-1495.	1.6	133
106	Circulating Endothelial Progenitor Cells in Patients With Eisenmenger Syndrome and Idiopathic Pulmonary Arterial Hypertension. Circulation, 2008, 117, 3020-3030.	1.6	208
107	Phosphodiesterase inhibitors for the treatment of pulmonary hypertension. European Respiratory Journal, 2008, 32, 198-209.	3.1	129
108	Growth Differentiation Factor-15 in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 534-541.	2.5	134

#	Article	IF	CITATIONS
109	Synergy between Natriuretic Peptides and Phosphodiesterase 5 Inhibitors Ameliorates Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 861-869.	2.5	59
110	Treating acute myocardial infarction: something in the wind?. Lancet, The, 2007, 370, 1461-1462.	6.3	5
111	Tetrahydrobiopterin And Pulmonary Hypertension. , 2007, , 69-86.		0
112	Sildenafil And Hypoxic Pulmonary Hypertension. , 2007, , 133-143.		0
113	Identification of plasma protein biomarkers associated with idiopathic pulmonary arterial hypertension. Proteomics, 2006, 6, 2286-2294.	1.3	52
114	Genetic Association of the Serotonin Transporter in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 793-797.	2.5	88
115	cAMP phosphodiesterase inhibitors potentiate effects of prostacyclin analogs in hypoxic pulmonary vascular remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L103-L115.	1.3	74
116	Phosphodiesterase type 5 and high altitude pulmonary hypertension. Thorax, 2005, 60, 683-687.	2.7	82
117	Sildenafil versus Endothelin Receptor Antagonist for Pulmonary Hypertension (SERAPH) Study. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1292-1297.	2.5	345
118	Antiproliferative Effects of Phosphodiesterase Type 5 Inhibition in Human Pulmonary Artery Cells. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 105-113.	2.5	316
119	Bosentan: profile report. Drugs and Therapy Perspectives, 2003, 19, 5-6.	0.3	Ο
120	Beneficial Effects of Phosphodiesterase 5 Inhibition in Pulmonary Hypertension Are Influenced by Natriuretic Peptide Activity. Circulation, 2003, 107, 234-237.	1.6	102
121	Phosphodiesterase Type 5 as a Target for the Treatment of Hypoxia-Induced Pulmonary Hypertension. Circulation, 2003, 107, 3230-3235.	1.6	233
122	Characterization of High-Altitude Pulmonary Hypertension in the Kyrgyz. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 1396-1402.	2.5	115
123	Natriuretic peptide receptors and the heart. British Heart Journal, 2002, 87, 314-315.	2.2	19
124	Recent insights into the pathogenesis and therapeutics of pulmonary hypertension. Clinical Science, 2002, 102, 253-268.	1.8	30
125	Recent insights into the pathogenesis and therapeutics of pulmonary hypertension. Clinical Science, 2002, 102, 253.	1.8	16
126	What do we want from proteomics in the detection and avoidance of adverse drug reactions. Toxicology Letters, 2002, 127, 245-249.	0.4	19

#	Article	IF	CITATIONS
127	Bosentan. American Journal of Cardiovascular Drugs, 2002, 2, 343.	1.0	1
128	Nitric oxide, phosphodiesterase inhibition, and adaption to hypoxic conditions. Lancet, The, 2002, 359, 1539-1540.	6.3	18
129	Developments in therapeutics for pulmonary arterial hypertension. Minerva Cardioangiologica, 2002, 50, 175-87.	1.2	2
130	Characterization of adenylyl cyclase isoforms in rat peripheral pulmonary arteries. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L1359-L1369.	1.3	38
131	Right Ventricular Hypertrophy Secondary to Pulmonary Hypertension Is Linked to Rat Chromosome 17. Circulation, 2001, 103, 442-447.	1.6	31
132	Genetic and molecular mechanisms of pulmonary hypertension. Clinical Medicine, 2001, 1, 138-145.	0.8	4
133	Sildenafil Inhibits Hypoxia-Induced Pulmonary Hypertension. Circulation, 2001, 104, 424-428.	1.6	458
134	Vascular remodeling and ET-1 expression in rat strains with different responses to chronic hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L981-L987.	1.3	50
135	A gene for primary pulmonary hypertension. Lancet, The, 2000, 356, 1207-1208.	6.3	13
136	NPR-A–Deficient Mice Show Increased Susceptibility to Hypoxia-Induced Pulmonary Hypertension. Circulation, 1999, 99, 605-607.	1.6	86
137	Genetic Determination of Cardiac Mass in Normotensive Rats. Hypertension, 1999, 33, 949-953.	1.3	93
138	Effect of atrial natriuretic peptide and cyclic GMP phosphodiesterase inhibition on collagen synthesis by adult cardiac fibroblasts. British Journal of Pharmacology, 1998, 124, 1455-1462.	2.7	62
139	Downregulation of natriuretic peptide C-receptor protein in the hypertrophied ventricle of the aortovenocaval fistula rat. Cardiovascular Research, 1997, 36, 363-371.	1.8	11
140	Renal effects of concurrent Eâ€24.11 and ACE inhibition in the aortoâ€venocaval fistula rat. British Journal of Pharmacology, 1996, 119, 943-948.	2.7	6
141	Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung. British Journal of Pharmacology, 1996, 119, 1217-1222.	2.7	45
142	Adrenomedullin activity in chronically hypoxic rat lungs. American Journal of Physiology - Heart and Circulatory Physiology, 1996, 271, H622-H629.	1.5	20
143	The regulation of pulmonary vascular tone. British Journal of Clinical Pharmacology, 1996, 42, 127-131.	1.1	15
144	Renal response to candoxatrilat in patients with heart failure. Journal of the American College of Cardiology, 1995, 25, 1273-1281.	1.2	43

#	Article	IF	CITATIONS
145	Selective increase in endothelin-1 and endothelin A receptor subtype in the hypertrophied myocardium of the aorto-venacaval fistula rat. Cardiovascular Research, 1995, 29, 768-74.	1.8	11
146	Induction of nitric oxide synthase in cultured vascular smooth muscle cells: the role of cyclic AMP. British Journal of Pharmacology, 1994, 112, 396-402.	2.7	44
147	Identification of renal natriuretic peptide receptor subpopulations by use of the nonâ€peptide antagonist, HSâ€142â€1. British Journal of Pharmacology, 1994, 113, 931-939.	2.7	11
148	Inhibition of nitric oxide synthesis in vascular smooth muscle by retinoids. British Journal of Pharmacology, 1994, 113, 1448-1454.	2.7	46
149	Effect of endopeptidaseâ€24.11 inhibition and of atrial natriuretic peptide clearance receptor ligand on the response to rat brain natriuretic peptide in the conscious rat. British Journal of Pharmacology, 1993, 110, 350-354.	2.7	6
150	The natriuretic peptide family: turning hormones into drugs. Journal of Endocrinology, 1993, 137, 347-359.	1.2	35
151	Clinical potential of endopeptidase-24.11 inhibitors in cardiovascular disease. Biochemical Society Transactions, 1993, 21, 673-678.	1.6	5
152	Differential regulation of natriuretic peptide receptor messenger RNAs during the development of cardiac hypertrophy in the rat Journal of Clinical Investigation, 1993, 92, 2702-2712.	3.9	72
153	Meta-iodobenzylguanidine (MIBG) scanning in the diagnosis of phaeochromocytoma. Journal of Human Hypertension, 1993, 7, 353-6.	1.0	5
154	Response to atrial natriuretic peptide, endopeptidase 24.11 inhibitor and Câ€ANP receptor ligand in the rat. British Journal of Pharmacology, 1992, 107, 50-57.	2.7	13
155	Effect of pharmacological manipulation of endogenous atriopeptin activity on renal function. American Journal of Physiology - Renal Physiology, 1992, 262, F161-F167.	1.3	4
156	A comparison of the effects of the selective peripheralα 1-blocker terazosin with the selectiveβ 1-blocker atenolol on blood pressure, exercise performance and the lipid profile in mild-to-moderate essential hypertension. Clinical Autonomic Research, 1992, 2, 373-381.	1.4	3
157	Renal synthesis of atriopeptin-like protein in physiology and pathophysiology. American Journal of Physiology - Renal Physiology, 1991, 260, F602-F607.	1.3	14
158	Hypotension induced by intravascular administration of nerve growth factor in the rat. Clinical Science, 1991, 80, 565-569.	1.8	8
159	Maximizing the natriuretic effect of endogenous atriopeptin in a rat model of heart failure Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6465-6469.	3.3	64
160	Augmentation of the natriuretic activity of exogenous and endogenous atriopeptin in rats by inhibition of guanosine 3',5'-cyclic monophosphate degradation Journal of Clinical Investigation, 1990, 85, 1274-1279.	3.9	47
161	Alternative mechanisms for atriopeptin prohormone processing by isolated perfused rat hearts. Journal of Pharmacology and Experimental Therapeutics, 1990, 254, 228-35.	1.3	1
162	Development and validation of a two-site immunoradiometric assay for human atrial natriuretic factor in unextracted plasma Clinical Chemistry, 1989, 35, 953-957.	1.5	15

#	Article	IF	CITATIONS
163	Atrial Natriuretic Factor. Annals of Clinical Biochemistry, 1989, 26, 115-118.	0.8	6
164	Carbidopa Does Not Affect the Renal Response to Atrial Natriuretic Factor in Man. Clinical Science, 1989, 77, 281-285.	1.8	6
165	Development and validation of a two-site immunoradiometric assay for human atrial natriuretic factor in unextracted plasma. Clinical Chemistry, 1989, 35, 953-7.	1.5	3
166	Effect of lower body positive pressure on blood pressure, plasma atrial natriuretic factor concentration, and sodium and water excretion in healthy volunteers and cardiac transplant recipients. Cardiovascular Research, 1988, 22, 231-235.	1.8	18
167	Urinary guanosine 3′: 5′-cyclic monophosphate but not tissue kallikrein follows the plasma atrial natriuretic factor response to acute volume expansion with saline. Clinical Science, 1988, 75, 489-494.	1.8	13
168	Raised concentrations of plasma atrial natriuretic peptides in cardiac transplant recipients BMJ: British Medical Journal, 1987, 294, 122-122.	2.4	2
169	Ranitidine and cimetidine; drug interactions with single dose and steadyâ€state nifedipine administration British Journal of Clinical Pharmacology, 1987, 23, 311-315.	1.1	48
170	Captopril reduces the renal response to intravenous atrial natriuretic peptide in normotensives. Journal of Human Hypertension, 1987, 1, 47-51.	1.0	12
171	Change in plasma immunoreactive atrial natriuretic peptide during sequential ultrafiltration and haemodialysis. Clinical Science, 1986, 71, 157-160.	1.8	88
172	Behcet's disease presenting as benign intracranial hypertension Postgraduate Medical Journal, 1986, 62, 39-41.	0.9	22
173	Sodium transport across erythrocyte membranes in diabetes mellitus. Diabetes Research, 1986, 3, 407-10.	0.1	3
174	William Withering and digitalis, 1785 to 1985 BMJ: British Medical Journal, 1985, 290, 7-8.	2.4	19
175	Stroke affecting young men after alcoholic binges BMJ: British Medical Journal, 1985, 291, 1342-1342.	2.4	37
176	Effect of propranolol on thyroid homeostasis of healthy volunteers Postgraduate Medical Journal, 1985, 61, 391-394.	0.9	9
177	The effect of propranolol on circulating thyroid hormone measurements in thyrotoxic and euthyroid subjects. European Journal of Endocrinology, 1985, 108, 351-355.	1.9	10
178	A placebo controlled comparison of the effects of pirenzepine and amitriptyline on the tyramine pressor test in healthy volunteers British Journal of Clinical Pharmacology, 1985, 19, 829-831.	1.1	3
179	Dissociation of changes in sodium transport in erythrocytes from changes in blood pressure. Journal of Hypertension Supplement: Official Journal of the International Society of Hypertension, 1985, 3, S21-3.	0.1	0
180	AMIODARONE AND PLASMA DIGOXIN LEVELS. Lancet, The, 1984, 323, 1180.	6.3	0

#	Article	IF	CITATIONS
181	Beta-adrenoceptor blocking drugs and the elderly. Journal of the Royal College of Physicians of London, 1984, 18, 42-5.	0.2	5
182	DRUG REACTIONS AND THE POOR METABOLISER. Lancet, The, 1983, 322, 110.	6.3	3
183	TEST FOR CIRCULATING Na+-K+ ATPase INHIBITORS. Lancet, The, 1983, 321, 1219.	6.3	0
184	Responsiveness to betaâ€adrenergic receptor stimulation: the effects of age are cardioselective British Journal of Clinical Pharmacology, 1982, 14, 821-826.	1.1	59
185	Side effects of benoxaprofen. BMJ: British Medical Journal, 1982, 284, 1782-1783.	2.4	3