Brett A Helms

List of Publications by Citations

Source: https://exaly.com/author-pdf/9060251/brett-a-helms-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 92
 5,296
 39
 72

 papers
 citations
 h-index
 g-index

 105
 6,145
 12.8
 5.92

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
92	Dendronized linear polymers via "click chemistry". <i>Journal of the American Chemical Society</i> , 2004 , 126, 15020-1	16.4	545
91	Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. <i>Nano Letters</i> , 2011 , 11, 4706-10	11.5	396
90	One-pot reaction cascades using star polymers with core-confined catalysts. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6384-7	16.4	251
89	Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein's salt. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 684-9	16.4	211
88	Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. <i>Nature Chemistry</i> , 2019 , 11, 442-448	17.6	208
87	Reconfigurable ferromagnetic liquid droplets. <i>Science</i> , 2019 , 365, 264-267	33.3	188
86	Chemistry. Dendrimers at work. <i>Science</i> , 2006 , 313, 929-30	33.3	188
85	Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9565-8	16.4	154
84	A versatile new monomer family: functionalized 4-vinyl-1,2,3-triazoles via click chemistry. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12084-5	16.4	149
83	Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance. <i>Nano Letters</i> , 2015 , 15, 5574-9	11.5	143
82	The effect of macromolecular architecture in nanomaterials: a comparison of site isolation in porphyrin core dendrimers and their isomeric linear analogues. <i>Journal of the American Chemical Society</i> , 2002 , 124, 3926-38	16.4	133
81	Processable cyclic peptide nanotubes with tunable interiors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15296-9	16.4	111
80	Sub-10 nm nanofabrication via nanoimprint directed self-assembly of block copolymers. <i>ACS Nano</i> , 2011 , 5, 8523-31	16.7	109
79	Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. <i>Nature Communications</i> , 2017 , 8, 2277	17.4	100
78	Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers. <i>ACS Nano</i> , 2011 , 5, 1376-84	16.7	95
77	Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. <i>Nature Nanotechnology</i> , 2017 , 12, 1060-1063	28.7	94
76	Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1595-1599	16.4	84

(2019-2005)

75	Effects of Polymer Architecture and Nanoenvironment in Acylation Reactions Employing Dendritic (Dialkylamino)pyridine Catalysts. <i>Macromolecules</i> , 2005 , 38, 5411-5415	5.5	83	
74	High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. <i>ACS Central Science</i> , 2018 , 4, 189-196	16.8	82	
73	Assembly of ligand-stripped nanocrystals into precisely controlled mesoporous architectures. <i>Nano Letters</i> , 2012 , 12, 3872-7	11.5	81	
72	Poly(oxime-ester) Vitrimers with Catalyst-Free Bond Exchange. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13753-13757	16.4	80	
71	Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. <i>Advanced Materials</i> , 2018 , 30, 1704953	24	67	
70	Iron complexes of dendrimer-appended carboxylates for activating dioxygen and oxidizing hydrocarbons. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4352-63	16.4	66	
69	High-affinity peptide-based collagen targeting using synthetic phage mimics: from phage display to dendrimer display. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11683-5	16.4	65	
68	Polyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11631		63	
67	Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. <i>Nature Materials</i> , 2020 , 19, 758-766	27	62	
66	Structured Liquids with pH-Triggered Reconfigurability. <i>Advanced Materials</i> , 2016 , 28, 6612-8	24	61	
65	Toward polymer upcycling-adding value and tackling circularity. Science, 2021, 373, 66-69	33.3	61	
64	Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids. <i>Nano Letters</i> , 2010 , 10, 4086-92	11.5	57	
63	Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices. <i>Nature Communications</i> , 2019 , 10, 1095	17.4	55	
62	Mechanistic insight into the formation of cationic naked nanocrystals generated under equilibrium control. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15702-10	16.4	46	
61	Constructing functional mesostructured materials from colloidal nanocrystal building blocks. <i>Accounts of Chemical Research</i> , 2014 , 47, 236-46	24.3	46	
60	NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3328	7.1	45	
59	Efficient and chemoselective surface immobilization of proteins by using aniline-catalyzed oxime chemistry. <i>ChemBioChem</i> , 2009 , 10, 658-62	3.8	45	
58	Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. <i>Nano Letters</i> , 2019 , 19, 1387-1394	11.5	42	

57	Reconfigurable Microfluidic Droplets Stabilized by Nanoparticle Surfactants. ACS Nano, 2018, 12, 2365-	2387.7	40
56	Interface segregating fluoralkyl-modified polymers for high-fidelity block copolymer nanoimprint lithography. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2812-5	16.4	40
55	U.S. energy savings potential from dynamic daylighting control glazings. <i>Energy and Buildings</i> , 2013 , 66, 415-423	7	39
54	Site-specific protein and peptide immobilization on a biosensor surface by pulsed native chemical ligation. <i>ChemBioChem</i> , 2007 , 8, 1790-4	3.8	39
53	Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries. <i>ACS Central Science</i> , 2017 , 3, 399-406	16.8	38
52	Self-Regulated Nanoparticle Assembly at Liquid/Liquid Interfaces: A Route to Adaptive Structuring of Liquids. <i>Langmuir</i> , 2017 , 33, 7994-8001	4	38
51	Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithiumBulfur battery membranes cast from polymers of intrinsic microporosity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16946-16952	13	36
50	Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets. <i>Nano Letters</i> , 2017 , 17, 3119-3125	11.5	33
49	Aqueous-Processable Redox-Active Supramolecular Polymer Binders for Advanced Lithium/Sulfur Cells. <i>Chemistry of Materials</i> , 2018 , 30, 685-691	9.6	33
48	Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density. <i>Chemistry of Materials</i> , 2018 , 30, 3861-3866	9.6	33
47	From phage display to dendrimer display: insights into multivalent binding. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6636-41	16.4	32
46	Thermally Rearranged Polymer Membranes Containing Trger's Base Units Have Exceptional Performance for Air Separations. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4912-4916	16.4	30
45	Sculpting Liquids with Two-Dimensional Materials: The Assembly of TiCT MXene Sheets at Liquid-Liquid Interfaces. <i>ACS Nano</i> , 2019 , 13, 12385-12392	16.7	30
44	Conformational Entropy as a Means to Control the Behavior of Poly(diketoenamine) Vitrimers In and Out of Equilibrium. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 735-739	16.4	30
43	Enhancement of CO binding and mechanical properties upon diamine functionalization of M(dobpdc) metal-organic frameworks. <i>Chemical Science</i> , 2018 , 9, 5197-5206	9.4	28
42	Evolution of ordered metal chalcogenide architectures through chemical transformations. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7446-9	16.4	27
41	Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers. <i>Macromolecules</i> , 2018 , 51, 3539-3546	5.5	26
40	Nanoporous semiconductors synthesized through polymer templating of ligand-stripped CdSe nanocrystals. <i>Advanced Materials</i> , 2013 , 25, 1315-22	24	25

(2020-2015)

39	Dispersible Plasmonic Doped Metal Oxide Nanocrystal Sensors that Optically Track Redox Reactions in Aqueous Media with Single-Electron Sensitivity. <i>Advanced Optical Materials</i> , 2015 , 3, 1293-137	d o	24
38	A practical approach to the living polymerization of functionalized monomers: application to block copolymers and 3-dimensional macromolecular architectures. <i>Macromolecular Symposia</i> , 2001 , 174, 85-92.	.8	24
37	Diversity-oriented synthesis of polymer membranes with ion solvation cages. <i>Nature</i> , 2021 , 592, 225-231 ₅ 0	0.4	24
36	Reaction: Polymer Chemistries Enabling Cradle-to-Cradle Life Cycles for Plastics. <i>CheM</i> , 2016 , 1, 816-818 $_{16}$	6.2	24
35	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie - International Edition, 2021 , 60, 12438-12445	6.4	23
34	Diamine-Appended Mg(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO/N Separations. <i>Nano Letters</i> , 2017 , 17, 6828-6832	1.5	22
33	Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands. <i>Science Advances</i> , 2018 , 4, eaap8045	4.3	18
32	Colloidal Nanocrystal Frameworks. <i>Advanced Materials</i> , 2015 , 27, 5820-9	4	17
31	Synthesis of pyridine chitosan and its protonic conductivity. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 211-214	.5	17
30	Leveling the cost and carbon footprint of circular polymers that are chemically recycled to monomer. <i>Science Advances</i> , 2021 , 7,	4.3	17
29	Block Copolymer Packing Limits and Interfacial Reconfigurability in the Assembly of Periodic Mesoporous Organosilicas. <i>Advanced Functional Materials</i> , 2015 , 25, 4120-4128	5.6	16
28	Efficient polymer passivation of ligand-stripped nanocrystal surfaces. <i>Journal of Polymer Science</i> Part A, 2012 , 50, 3719-3727	.5	16
27	Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 1617-1621	6	15
26	Exceptionally Mild Reactive Stripping of Native Ligands from Nanocrystal Surfaces by Using Meerwein Salt. <i>Angewandte Chemie</i> , 2012 , 124, 708-713	6	15
25	Influence of Surface Composition on Electronic Transport through Naked Nanocrystal Networks. Chemistry of Materials, 2014 , 26, 2214-2217 9.	.6	14
24	A Versatile, Modular Platform for Multivalent Peptide Ligands Based on a Dendritic Wedge. European Journal of Organic Chemistry, 2010 , 2010, 111-119	2	14
23	Organic Nanotube with Subnanometer, pH-Responsive Lumen. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10953-10957	6.4	13
22	Hanging droplets from liquid surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 8360-8365	1.5	13

21	Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface. <i>Science Advances</i> , 2020 , 6,	14.3	13
20	Stealth rare earth oxide nanodiscs for magnetic resonance imaging. <i>Advanced Healthcare Materials</i> , 2012 , 1, 437-42	10.1	12
19	Collagen targeting using multivalent protein-functionalized dendrimers. <i>Bioorganic and Medicinal Chemistry</i> , 2011 , 19, 1062-71	3.4	12
18	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23180-23187	16.4	12
17	Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition. <i>Macromolecules</i> , 2018 , 51, 7666-7671	5.5	8
16	Synthetic development of cell-permeable polymer colloids decorated with nanocrystal imaging probes optimized for cell tracking. <i>Chemical Science</i> , 2012 , 3, 2246	9.4	7
15	Aqueous Processing and Spray Deposition of Polymer-Wrapped Tin-Doped Indium Oxide Nanocrystals as Electrochromic Thin Films. <i>Chemistry of Materials</i> , 2020 , 32, 8401-8411	9.6	7
14	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. <i>Angewandte Chemie</i> , 2020 , 132, 23380-23387	3.6	6
13	Nearest-neighbour nanocrystal bonding dictates framework stability or collapse in colloidal nanocrystal frameworks. <i>Chemical Communications</i> , 2017 , 53, 4853-4856	5.8	5
12	Spontaneous emulsification induced by nanoparticle surfactants. <i>Journal of Chemical Physics</i> , 2020 , 153, 224705	3.9	4
11	Conformational Entropy as a Means to Control the Behavior of Poly(diketoenamine) Vitrimers In and Out of Equilibrium. <i>Angewandte Chemie</i> , 2020 , 132, 745-749	3.6	3
10	Chemical doping enhances electronic transport in networks of hexabenzocoronenes assembled in non-aqueous electrolyte. <i>Polymer Chemistry</i> , 2015 , 6, 5560-5564	4.9	2
9	Thermally Rearranged Polymer Membranes Containing Trger's Base Units Have Exceptional Performance for Air Separations. <i>Angewandte Chemie</i> , 2018 , 130, 5006-5010	3.6	2
8	Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure. <i>Chemical Science</i> , 2015 , 6, 6295-6304	9.4	1
7	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. <i>Angewandte Chemie</i> , 2021 , 133, 12546-12553	3.6	1
6	Revealing Charge-Transfer Dynamics at Electrified Sulfur Cathodes Using Constrained Density Functional Theory. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 739-744	6.4	1
5	The Buckling Spectra of Nanoparticle Surfactant Assemblies. <i>Nano Letters</i> , 2021 , 21, 7116-7122	11.5	1
4	Lower-Cost, Lower-Carbon Production of Circular Polydiketoenamine Plastics. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 2740-2749	8.3	O

LIST OF PUBLICATIONS

	Rüktitelbild: Thermally Rearranged Polymer Membranes Containing Trijer's Base Units Have	
3	Exceptional Performance for Air Separations (Angew. Chem. 18/2018). Angewandte Chemie, 2018,	3.6
	130. 5274-5274	

Synthetic control over the dynamics of mesoscaled cargo release from colloidal polymer vectors inside live cells. *Journal of Polymer Science Part A*, **2015**, 53, 256-264

2.5

Delivery of custom-purposed colloidal nanocrystals to cancer cells. *Therapeutic Delivery*, **2012**, 3, 1041-5 3.8