List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9059762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elevated temperature may reduce functional but not taxonomic diversity of fungal assemblages on decomposing leaf litter in streams. Global Change Biology, 2022, 28, 115-127.	4.2	9
2	Combined perâ€capita and abundance effects of an invasive species on native invertebrate diversity and a key ecosystem process. Freshwater Biology, 2022, 67, 828-841.	1.2	11
3	Can microplastics from personal care products affect stream microbial decomposers in the presence of silver nanoparticles?. Science of the Total Environment, 2022, 832, 155038.	3.9	7
4	Eco-physiological Responses of Aquatic Fungi to Three Global Change Stressors Highlight the Importance of Intraspecific Trait Variability. Microbial Ecology, 2022, , 1.	1.4	3
5	Antiparasitic potential of agrochemical fungicides on a non-target aquatic model (Daphnia ×) Tj ETQq1 1 0.784	314 rgBT 3.9	/Oyerlock 10
6	Evidence of micro and macroplastic toxicity along a stream detrital food-chain. Journal of Hazardous Materials, 2022, 436, 129064.	6.5	8
7	Plastic Interactions with Pollutants and Consequences to Aquatic Ecosystems: What We Know and What We Do Not Know. Biomolecules, 2022, 12, 798.	1.8	18
8	Temperature and interspecific competition alter the impacts of two invasive crayfish species on a key ecosystem process. Biological Invasions, 2022, 24, 3757-3768.	1.2	1
9	Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus. Environmental Pollution, 2021, 268, 115913.	3.7	13
10	Linking Microbial Decomposer Diversity to Plant Litter Decomposition and Associated Processes in Streams. , 2021, , 163-192.		4
11	Can photocatalytic and magnetic nanoparticles be a threat to aquatic detrital food webs?. Science of the Total Environment, 2021, 769, 144576.	3.9	9
12	Priority effects of stream eutrophication and assembly history on beta diversity across aquatic consumers, decomposers and producers. Science of the Total Environment, 2021, 797, 149106.	3.9	8
13	Importance of exposure route in determining nanosilver impacts on a stream detrital processing chain. Environmental Pollution, 2021, 290, 118088.	3.7	3
14	Individual and mixed effects of anticancer drugs on freshwater rotifers: A multigenerational approach. Ecotoxicology and Environmental Safety, 2021, 227, 112893.	2.9	6
15	Aquatic Hyphomycete Taxonomic Relatedness Translates into Lower Genetic Divergence of the Nitrate Reductase Gene. Journal of Fungi (Basel, Switzerland), 2021, 7, 1066.	1.5	3
16	Legacy of Summer Drought on Autumnal Leaf Litter Processing in a Temporary Mediterranean Stream. Ecosystems, 2020, 23, 989-1003.	1.6	18
17	Fungistatic effect of agrochemical and pharmaceutical fungicides on non-target aquatic decomposers does not translate into decreased fungi- or invertebrate-mediated decomposition. Science of the Total Environment, 2020, 712, 135676.	3.9	17
18	Proteomic responses to silver nanoparticles vary with the fungal ecotype. Science of the Total Environment, 2020, 704, 135385.	3.9	18

#	Article	IF	CITATIONS
19	Effects of metal nanoparticles on freshwater rotifers may persist across generations. Aquatic Toxicology, 2020, 229, 105652.	1.9	14
20	Biochemical and functional responses of stream invertebrate shredders to post-wildfire contamination. Environmental Pollution, 2020, 267, 115433.	3.7	18
21	Reply to the "Letter to the editor, Proteomic responses to silver nanoparticles vary with the fungal ecotype―by Huang et al Science of the Total Environment, 2020, 748, 142402.	3.9	Ο
22	The Increase in Temperature Overwhelms Silver Nanoparticle Effects on the Aquatic Invertebrate Limnephilus sp Environmental Toxicology and Chemistry, 2020, 39, 1429-1437.	2.2	7
23	Nanosilver impacts on aquatic microbial decomposers and litter decomposition assessed as pollution-induced community tolerance (PICT). Environmental Science: Nano, 2020, 7, 2130-2139.	2.2	11
24	Riparian land use and stream habitat regulate water quality. Limnologica, 2020, 82, 125762.	0.7	13
25	Potential of Yeasts as Biocontrol Agents of the Phytopathogen Causing Cacao Witches' Broom Disease: Is Microbial Warfare a Solution?. Frontiers in Microbiology, 2019, 10, 1766.	1.5	29
26	Intraspecific diversity affects stress response and the ecological performance of a cosmopolitan aquatic fungus. Fungal Ecology, 2019, 41, 218-223.	0.7	8
27	Wildfire impacts on freshwater detrital food webs depend on runoff load, exposure time and burnt forest type. Science of the Total Environment, 2019, 692, 691-700.	3.9	38
28	Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. Environmental Science: Nano, 2019, 6, 1207-1218.	2.2	29
29	Effects of intrapopulation phenotypic traits of invasive crayfish on leaf litter processing. Hydrobiologia, 2018, 819, 67-75.	1.0	5
30	Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Science of the Total Environment, 2018, 621, 486-496.	3.9	36
31	Base Nacional Comum Curricular: ponto de saturação e retrocesso na educação. Revista Retratos Da Escola, 2018, 12, 239.	0.0	9
32	Spring stimulates leaf decomposition in moderately eutrophic streams. Aquatic Sciences, 2017, 79, 197-207.	0.6	13
33	How do physicochemical properties influence the toxicity of silver nanoparticles on freshwater decomposers of plant litter in streams?. Ecotoxicology and Environmental Safety, 2017, 140, 148-155.	2.9	29
34	New climatic targets against global warming: will the maximum 2 °C temperature rise affect estuarine benthic communities?. Scientific Reports, 2017, 7, 3918.	1.6	16
35	Temperature modulates AgNP impacts on microbial decomposer activity. Science of the Total Environment, 2017, 601-602, 1324-1332.	3.9	33
36	Responses of microbial decomposers to drought in streams may depend on the environmental context. Environmental Microbiology Reports, 2017, 9, 756-765.	1.0	18

#	Article	IF	CITATIONS
37	Does the developmental stage and composition of riparian forest stand affect ecosystem functioning in streams?. Science of the Total Environment, 2017, 609, 1500-1511.	3.9	13
38	Taxa-area relationship of aquatic fungi on deciduous leaves. PLoS ONE, 2017, 12, e0181545.	1.1	15
39	Pollutionâ€induced community tolerance (<scp>PICT</scp>): towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshwater Biology, 2016, 61, 2141-2151.	1.2	86
40	Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams. Microbial Ecology, 2016, 72, 263-276.	1.4	24
41	Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition—a microcosm experiment. FEMS Microbiology Ecology, 2016, 92, fiw102.	1.3	12
42	Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders. Aquatic Toxicology, 2016, 180, 227-235.	1.9	22
43	Humic acid can mitigate the toxicity of small copper oxide nanoparticles to microbial decomposers and leaf decomposition in streams. Freshwater Biology, 2016, 61, 2197-2210.	1.2	29
44	Structural and functional measures of leaf-associated invertebrates and fungi as predictors of stream eutrophication. Ecological Indicators, 2016, 69, 648-656.	2.6	37
45	Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams. Science of the Total Environment, 2016, 565, 489-495.	3.9	4
46	Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiology Ecology, 2016, 92, fiw121.	1.3	51
47	Direct and indirect effects of an invasive omnivore crayfish on leaf litter decomposition. Science of the Total Environment, 2016, 541, 714-720.	3.9	16
48	Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. Fungal Ecology, 2016, 19, 169-181.	0.7	68
49	Eutrophication modulates plant-litter diversity effects on litter decomposition in streams. Freshwater Science, 2015, 34, 31-41.	0.9	14
50	Natural organic matter alters size-dependent effects of nanoCuO on the feeding behaviour of freshwater invertebrate shredders. Science of the Total Environment, 2015, 535, 94-101.	3.9	15
51	Fungi from metalâ€polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles. Environmental Toxicology and Chemistry, 2015, 34, 923-930.	2.2	31
52	Plant litter diversity affects invertebrate shredder activity and the quality of fine particulate organic matter in streams. Marine and Freshwater Research, 2015, 66, 449.	0.7	16
53	Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication. Environmental Pollution, 2015, 202, 32-40.	3.7	52
54	Microscopy- or DNA-based analyses: Which methodology gives a truer picture of stream-dwelling decomposer fungal diversity?. Fungal Ecology, 2015, 18, 130-134.	0.7	15

#	Article	IF	CITATIONS
55	Some new DNA barcodes of aquatic hyphomycete species. Mycoscience, 2015, 56, 102-108.	0.3	17
56	Stream-dwelling fungal decomposer communities along a gradient of eutrophication unraveled by 454 pyrosequencing. Fungal Diversity, 2015, 70, 127-148.	4.7	80
57	Physiological responses to nanoCuO in fungi from non-polluted and metal-polluted streams. Science of the Total Environment, 2014, 466-467, 556-563.	3.9	29
58	Polyhydroxyfullerene Binds Cadmium Ions and Alleviates Metal-Induced Oxidative Stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2014, 80, 5874-5881.	1.4	12
59	Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshwater Biology, 2014, 59, 2390-2399.	1.2	72
60	Temperature alters interspecific relationships among aquatic fungi. Fungal Ecology, 2013, 6, 187-191.	0.7	24
61	A decade's perspective on the impact of DNA sequencing on aquatic hyphomycete research. Fungal Biology Reviews, 2013, 27, 19-24.	1.9	21
62	Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose:H+ stoichiometry. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 201-207.	1.4	26
63	Effects of Riparian Plant Diversity Loss on Aquatic Microbial Decomposers Become More Pronounced with Increasing Time. Microbial Ecology, 2013, 66, 763-772.	1.4	19
64	Denaturing Gradient Gel Electrophoresis (DGGE) in Microbial Ecology - Insights from Freshwaters. , 2012, , .		8
65	Higher temperature reduces the effects of litter quality on decomposition by aquatic fungi. Freshwater Biology, 2012, 57, 2306-2317.	1.2	58
66	Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology, 2012, 5, 734-740.	0.7	58
67	Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere, 2012, 89, 1142-1150.	4.2	49
68	Intraspecific Variation of the Aquatic Fungus Articulospora tetracladia: An Ubiquitous Perspective. PLoS ONE, 2012, 7, e35884.	1.1	31
69	The Use of Attached Microbial Communities to Assess Ecological Risks of Pollutants in River Ecosystems: The Role of Heterotrophs. Handbook of Environmental Chemistry, 2012, , 55-83.	0.2	13
70	Impacts of warming on aquatic decomposers along a gradient of cadmium stress. Environmental Pollution, 2012, 169, 35-41.	3.7	43
71	The role of the freshwater shrimp Atyaephyra desmarestii in leaf litter breakdown in streams. Hydrobiologia, 2012, 680, 149-157.	1.0	13
72	Preliminary Insights into the Phylogeography of Six Aquatic Hyphomycete Species. PLoS ONE, 2012, 7, e45289.	1.1	22

#	Article	IF	CITATIONS
73	Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia, 2011, 166, 1019-1028.	0.9	66
74	Effects of Cadmium and Phenanthrene Mixtures on Aquatic Fungi and Microbially Mediated Leaf Litter Decomposition. Archives of Environmental Contamination and Toxicology, 2011, 61, 211-219.	2.1	34
75	Can Metal Nanoparticles Be a Threat to Microbial Decomposers of Plant Litter in Streams?. Microbial Ecology, 2011, 62, 58-68.	1.4	116
76	Realized Fungal Diversity Increases Functional Stability of Leaf Litter Decomposition Under Zinc Stress. Microbial Ecology, 2010, 59, 84-93.	1.4	47
77	DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Diversity, 2010, 44, 77-87.	4.7	47
78	Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques. Microbiological Research, 2010, 165, 351-362.	2.5	62
79	Effects of Zn, Fe and Mn on Leaf Litter Breakdown by Aquatic Fungi: a Microcosm Study. International Review of Hydrobiology, 2010, 95, 12-26.	0.5	24
80	Assessing the Contribution of Micro-Organisms and Macrofauna to Biodiversity–Ecosystem Functioning Relationships in Freshwater Microcosms. Advances in Ecological Research, 2010, , 151-176.	1.4	29
81	When Microscopic Organisms Inform General Ecological Theory. Advances in Ecological Research, 2010, 43, 45-85.	1.4	17
82	Effects of metals on growth and sporulation of aquatic fungi. Drug and Chemical Toxicology, 2010, 33, 269-278.	1.2	37
83	Microbial Decomposer Communities Are Mainly Structured by Trophic Status in Circumneutral and Alkaline Streams. Applied and Environmental Microbiology, 2009, 75, 6211-6221.	1.4	65
84	Mixtures of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams. Science of the Total Environment, 2009, 407, 4283-4288.	3.9	39
85	The Role of Early Fungal Colonizers in Leafâ€Litter Decomposition in Portuguese Streams Impacted by Agricultural Runoff. International Review of Hydrobiology, 2009, 94, 399-409.	0.5	31
86	Responses of Aquatic Fungal Communities on Leaf Litter to Temperatureâ€Change Events. International Review of Hydrobiology, 2009, 94, 410-418.	0.5	42
87	Functional stability of streamâ€dwelling microbial decomposers exposed to copper and zinc stress. Freshwater Biology, 2009, 54, 1683-1691.	1.2	37
88	Metal stress induces programmed cell death in aquatic fungi. Aquatic Toxicology, 2009, 92, 264-270.	1.9	27
89	Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Freshwater Biology, 2008, 53, 91-101.	1.2	52
90	High Diversity of Fungi may Mitigate the Impact of Pollution on Plant Litter Decomposition in Streams. Microbial Ecology, 2008, 56, 688-695.	1.4	42

#	Article	IF	CITATIONS
91	Assessing effects of eutrophication in streams based on breakdown of eucalypt leaves. Fundamental and Applied Limnology, 2007, 168, 221-230.	0.4	20
92	Effects of heavy metals on the production of thiol compounds by the aquatic fungi Fontanospora fusiramosa and Flagellospora curta. Ecotoxicology and Environmental Safety, 2007, 66, 36-43.	2.9	44
93	Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Science of the Total Environment, 2007, 377, 233-243.	3.9	92
94	Functional Purification of the Monocarboxylate Transporter of the Yeast Candida utilis. Biotechnology Letters, 2006, 28, 1221-1226.	1.1	3
95	Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia, 2006, 147, 658-666.	0.9	159
96	Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellospora curta exposed to severe metal stress. Science of the Total Environment, 2006, 372, 148-156.	3.9	30
97	Evaluation of the Lactic Acid Consumption in Yeast Cultures by Voltammetric Means. Electroanalysis, 2005, 17, 483-488.	1.5	3
98	Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low-order stream. Archiv Für Hydrobiologie, 2005, 162, 481-496.	1.1	112
99	Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. Journal of the North American Benthological Society, 2005, 24, 784-797.	3.0	111
100	Contribution of Fungi and Bacteria to Leaf Litter Decomposition in a Polluted River. Applied and Environmental Microbiology, 2004, 70, 5266-5273.	1.4	308
101	Effects of Zinc on Leaf Decomposition by Fungi in Streams: Studies in Microcosms. Microbial Ecology, 2004, 48, 366-374.	1.4	47
102	Assessment of Candida utilis growth by voltammetric reduction of acids using microelectrodes. Journal of Electroanalytical Chemistry, 2004, 566, 139-145.	1.9	4
103	Assessing structural and functional ecosystem condition using leaf breakdown: studies on a polluted river. Freshwater Biology, 2003, 48, 2033-2044.	1.2	120
104	Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris. Biochemical Journal, 2003, 376, 781-787.	1.7	35
105	Leaf Breakdown Rates: a Measure of Water Quality?. International Review of Hydrobiology, 2001, 86, 407-416.	0.5	49
106	Leaf Breakdown Rates: a Measure of Water Quality?. International Review of Hydrobiology, 2001, 86, 407-416.	0.5	2
107	O efeito da complexidade estrutural da fonte de nitrogênio no transporte de amônio em Saccharomyces cerevisiae. Ecletica Quimica, 2001, 26, 157-173.	0.2	0
108	Utilization and Transport of Acetic Acid in Dekkera anomala and Their Implications on the Survival of the Yeast in Acidic Environments. Journal of Food Protection, 2000, 63, 96-101.	0.8	22

#	ARTICLE	IF	CITATIONS
109	l–[U–14C]Lactate binding to a 43ÂkDa protein in plasma membranes of Candida utilis. Microbiology (United Kingdom), 2000, 146, 695-699.	0.7	1
110	Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeastCandida utilis. , 1996, 12, 1263-1272.		11
111	A comparative study on the transport ofL(-)malic acid and other short-chain carboxylic acids in the yeastCandida utilis: Evidence for a general organic acid permease. Yeast, 1993, 9, 743-752.	0.8	45
112	Quantitative analysis of proton movements associated with the uptake of weak carboxylic acids. The yeast Candida utilis as a model. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1153, 59-66.	1.4	13
113	Comparative performance and ecotoxicity assessment of Y ₂ (CO ₃) ₃ , ZnO/TiO ₂ , and Fe ₃ O ₄ nanoparticles for arsenic removal from water. Environmental Science: Water Research and Technology. 0	1.2	0