
Sascha Offermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9059636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effectiveness of Light-Quality and Dark-White Growth Light Shifts in Short-Term Light Acclimation of Photosynthesis in Arabidopsis. Frontiers in Plant Science, 2021, 12, 615253.	3.6	5
2	Agrobacterium-mediated transient transformation of Bienertia sinuspersici to assay recombinant protein distribution between dimorphic chloroplasts. Plant Cell Reports, 2019, 38, 779-782.	5.6	1
3	Loss of the M-box from the glycine decarboxylase P-subunit promoter in C2 Moricandia species. Plant Gene, 2019, 18, 100176.	2.3	12
4	Efficient In Vivo Screening Method for the Identification of C4 Photosynthesis Inhibitors Based on Cell Suspensions of the Single-Cell C4 Plant Bienertia sinuspersici. Frontiers in Plant Science, 2019, 10, 1350.	3.6	3
5	Transit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici. Scientific Reports, 2017, 7, 41187.	3.3	14
6	Development, subcellular positioning and selective protein accumulation in the dimorphic chloroplasts of single-cell C4 species. Current Opinion in Plant Biology, 2016, 31, 76-82.	7.1	11
7	Developmental and Subcellular Organization of Single-Cell C4Photosynthesis inBienertia sinuspersiciDetermined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing. Journal of Proteome Research, 2015, 14, 2090-2108.	3.7	30
8	One decade after the discovery of single-cell C4 species in terrestrial plants: what did we learn about the minimal requirements of C4 photosynthesis?. Photosynthesis Research, 2014, 119, 169-180.	2.9	32
9	Can we learn from heterosis and epigenetics to improve photosynthesis?. Current Opinion in Plant Biology, 2014, 19, 105-110.	7.1	17
10	Photorespiratory bypasses: how can they work?. Journal of Experimental Botany, 2013, 64, 709-715.	4.8	64
11	A Common Histone Modification Code on C4 Genes in Maize and Its Conservation in Sorghum and <i>Setaria italica</i> Â Â Â. Plant Physiology, 2013, 162, 456-469.	4.8	39
12	Re-engineering of carbon fixation in plants – challenges for plant biotechnology to improve yields in a high-CO2 world. Current Opinion in Biotechnology, 2012, 23, 204-208.	6.6	25
13	In vitro cultures and regeneration of Bienertia sinuspersici (Chenopodiaceae) under increasing concentrations of sodium chloride and carbon dioxide. Plant Cell Reports, 2011, 30, 1541-1553.	5.6	13
14	Resolving the Compartmentation and Function of C4 Photosynthesis in the Single-Cell C4 Species Bienertia sinuspersici Â. Plant Physiology, 2011, 155, 1612-1628.	4.8	43
15	How do single cell C4 species form dimorphic chloroplasts?. Plant Signaling and Behavior, 2011, 6, 762-765.	2.4	9
16	The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae). Photosynthesis Research, 2010, 106, 201-214.	2.9	31
17	Developmental information but not promoter activity controls the methylation state of histone H3 lysine 4 on two photosynthetic genes in maize. Plant Journal, 2008, 53, 465-474.	5.7	30
18	Developmental and Environmental Signals Induce Distinct Histone Acetylation Profiles on Distal and Proximal Promoter Elements of the <i>C4-Pepc</i> Gene in Maize. Genetics, 2008, 179, 1891-1901.	2.9	35

#	Article	IF	CITATIONS
19	Leaf Development in the Single-Cell C ₄ System in <i>Bienertia sinuspersici</i> : Expression of Genes and Peptide Levels for C ₄ Metabolism in Relation to Chlorenchyma Structure under Different Light Conditions. Plant Physiology, 2008, 148, 593-610.	4.8	38
20	Illumination Is Necessary and Sufficient to Induce Histone Acetylation Independent of Transcriptional Activity at the C4-Specific Phosphoenolpyruvate Carboxylase Promoter in Maize. Plant Physiology, 2006, 141, 1078-1088.	4.8	47
21	QUANTITATIVE DETECTION OF TRANSGENIC AND ENDOGENOUS DNA SEQUENCES IN SEEDS AFTER AUTOMATED DNA PREPARATION. Biomedical Engineering - Applications, Basis and Communications, 2004, 16, 1-6.	0.6	3
22	Automated DNA preparation from maize tissues and food samples suitable for real-time PCR detection of native genes. European Food Research and Technology, 2002, 215, 443-446.	3.3	5