Hae Lin Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9059603/publications.pdf

Version: 2024-02-01

331670 454955 2,989 28 21 30 citations h-index g-index papers 30 30 30 5712 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 2016, 105, 255-274.	13.7	537
2	Hydrated Manganese(II) Phosphate (Mn ₃ (PO ₄) ₂ ·3H ₂ O) as a Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 7435-7443.	13.7	324
3	Rapid Continuous Multimaterial Extrusion Bioprinting. Advanced Materials, 2017, 29, 1604630.	21.0	275
4	Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Materials Today, 2018, 21, 362-376.	14.2	178
5	In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomaterialia, 2013, 9, 6177-6187.	8.3	171
6	Revisiting Whitlockite, the Second Most Abundant Biomineral in Bone: Nanocrystal Synthesis in Physiologically Relevant Conditions and Biocompatibility Evaluation. ACS Nano, 2014, 8, 634-641.	14.6	151
7	Development of hydrogels for regenerative engineering. Biotechnology Journal, 2017, 12, 1600394.	3.5	139
8	Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nature Nanotechnology, 2022, 17, 98-106.	31.5	135
9	Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials, 2017, 112, 31-43.	11.4	124
10	Chondroitin Sulfate-Based Biomineralizing Surface Hydrogels for Bone Tissue Engineering. ACS Applied Materials & Distriction (2017), 9, 21639-21650.	8.0	118
11	Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials, 2015, 65, 32-42.	11.4	106
12	In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and ⟨i⟩β⟨/i⟩â€Tricalcium Phosphate. Advanced Healthcare Materials, 2016, 5, 128-136.	7.6	103
13	Development of nanomaterials for bone-targeted drug delivery. Drug Discovery Today, 2017, 22, 1336-1350.	6.4	103
14	Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 2018, 69, 342-351.	8.3	91
15	Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. Journal of Materials Chemistry B, 2015, 3, 1342-1349.	5.8	66
16	Hybrid Zâ€Scheme Using Photosystem I and BiVO ₄ for Hydrogen Production. Advanced Functional Materials, 2015, 25, 2369-2377.	14.9	65
17	Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomaterials Science, 2018, 6, 1604-1615.	5.4	59
18	Simple Large-Scale Synthesis of Hydroxyapatite Nanoparticles: In Situ Observation of Crystallization Process. Langmuir, 2010, 26, 384-388.	3.5	49

#	Article	IF	CITATIONS
19	Human Nonalcoholic Steatohepatitis on a Chip. Hepatology Communications, 2021, 5, 217-233.	4.3	42
20	Boosting clinical translation of nanomedicine. Nanomedicine, 2016, 11, 1495-1497.	3.3	40
21	Transcellular transfer of nanomedicine. Nature Nanotechnology, 2019, 14, 731-732.	31.5	29
22	Biofunctionalized Ceramic with Self-Assembled Networks of Nanochannels. ACS Nano, 2015, 9, 4447-4457.	14.6	15
23	Recreating composition, structure, functionalities of tissues at nanoscale for regenerative medicine. Regenerative Medicine, 2016, 11, 849-858.	1.7	15
24	Inhibition of Tunneling Nanotubes between Cancer Cell and the Endothelium Alters the Metastatic Phenotype. International Journal of Molecular Sciences, 2021, 22, 6161.	4.1	12
25	Engineered cell-laden alginate microparticles for 3D culture. Biochemical Society Transactions, 2021, 49, 761-773.	3.4	11
26	Bioprinting: Rapid Continuous Multimaterial Extrusion Bioprinting (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	21.0	9
27	Whitlockite Promotes Bone Healing in Rabbit Ilium Defect Model. Journal of Medical and Biological Engineering, 2019, 39, 944-951.	1.8	9
28	3D Printed Anchoring Sutures for Permanent Shaping of Tissues. Macromolecular Bioscience, 2017, 17, 1700304.	4.1	7