Kenneth Brezinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9059335/publications.pdf

Version: 2024-02-01

38	1,997	22	37
papers	citations	h-index	g-index
38	38	38	1114
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Shock tube study of natural gas oxidation at propulsion relevant conditions. Proceedings of the Combustion Institute, 2022, , .	2.4	1
2	Experimental and modeling study of the oxidation of F-24 jet fuel, and its mixture with an iso-paraffinic synthetic jet fuel, ATJ. Combustion and Flame, 2021, 224, 108-125.	2.8	8
3	Experimental speciation study of natural gas oxidation using a single pulse shock tube. International Journal of Chemical Kinetics, 2021, 53, 845-867.	1.0	7
4	Oxidation of an ⟨i⟩iso⟨/i⟩â€paraffinic alcoholâ€toâ€jet fuel and nâ€heptane mixture: An experimental and modeling study. International Journal of Chemical Kinetics, 2021, 53, 1014-1035.	1.0	5
5	A high pressure shock tube study of pyrolysis of real jet fuel Jet A. Proceedings of the Combustion Institute, 2019, 37, 189-196.	2.4	18
6	Temperature approximations in chemical kinetics studies using single pulse shock tubes. Combustion and Flame, 2019, 209, 1-12.	2.8	26
7	Experimental and modeling study of hex-5-en-1-yl radical pyrolysis at very high pressure and temperature. Combustion and Flame, 2019, 201, 301-314.	2.8	O
8	Experimental and modeling study of the pyrolysis and oxidation of an iso-paraffinic alcohol-to-jet fuel. Combustion and Flame, 2019, 201, 57-64.	2.8	36
9	Variable highâ€pressure and concentration study of cyclohexane pyrolysis at high temperatures. International Journal of Chemical Kinetics, 2019, 51, 49-73.	1.0	5
10	Experimental and comparative modeling study of high temperature and very high pressure methylcyclohexane pyrolysis. Fuel, 2019, 237, 245-262.	3.4	13
11	A physics-based approach to modeling real-fuel combustion chemistry - I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations. Combustion and Flame, 2018, 193, 502-519.	2.8	304
12	A physics-based approach to modeling real-fuel combustion chemistry–Âll. Reaction kinetic models of jet and rocket fuels. Combustion and Flame, 2018, 193, 520-537.	2.8	247
13	A Physics-based approach to modeling real-fuel combustion chemistry –ÂIII. Reaction kinetic model of JP10. Combustion and Flame, 2018, 198, 466-476.	2.8	67
14	Influence of the double bond position on the oxidation of decene isomers at high pressures and temperatures. Proceedings of the Combustion Institute, 2015, 35, 333-340.	2.4	26
15	Chemical Kinetic Influences of Alkyl Chain Structure on the High Pressure and Temperature Oxidation of a Representative Unsaturated Biodiesel: Methyl Nonenoate. Journal of Physical Chemistry A, 2015, 119, 7559-7577.	1.1	20
16	Bayesian Error Propagation for a Kinetic Model of <i>n</i> a∈Propylbenzene Oxidation in a Shock Tube. International Journal of Chemical Kinetics, 2014, 46, 389-404.	1.0	38
17	Experimental and modeling study on the pyrolysis and oxidation of iso-octane. Proceedings of the Combustion Institute, 2013, 34, 353-360.	2.4	48
18	Experimental and modeling study on the pyrolysis and oxidation of n-decane and n-dodecane. Proceedings of the Combustion Institute, 2013, 34, 361-368.	2.4	93

#	Article	IF	CITATIONS
19	N-Heptane Pyrolysis and Oxidation in Ethylene–Methane and Iso-Octane Mixtures. Journal of Propulsion and Power, 2013, 29, 732-743.	1.3	8
20	Single Pulse Shock Tube Study of Allyl Radical Recombination. Journal of Physical Chemistry A, 2013, 117, 4762-4776.	1.1	33
21	Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel. Combustion and Flame, 2013, 160, 17-30.	2.8	95
22	High pressure study of 1,3,5-trimethylbenzene oxidation. Combustion and Flame, 2012, 159, 3264-3285.	2.8	20
23	High pressure study of n-propylbenzene oxidation. Combustion and Flame, 2012, 159, 940-958.	2.8	41
24	The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena. Combustion and Flame, 2012, 159, 1444-1466.	2.8	355
25	Biologically derived diesel fuel and NO formation: An experimental and chemical kinetic study, Part 1. Combustion and Flame, 2011, 158, 2289-2301.	2.8	45
26	Biologically derived diesel fuel and NO formation. Combustion and Flame, 2011, 158, 2302-2313.	2.8	21
27	High pressure study of m-xylene oxidation. Combustion and Flame, 2011, 158, 687-704.	2.8	38
28	High-pressure shock tube studies on graphite oxidation reactions with carbon dioxide and water. Proceedings of the Combustion Institute, 2011, 33, 1837-1842.	2.4	1
29	High-Pressure Shock Tube Studies on Carbon Oxidation Reactions with Carbon Dioxide and Water. Energy & Fuels, 2009, 23, 5806-5812.	2.5	2
30	Elevated Pressure Thermal Experiments and Modeling Studies on the Water-Gas Shift Reaction. Journal of Propulsion and Power, 2008, 24, 1085-1092.	1.3	4
31	A SHOCK-TUBE STUDY OF THE HIGH-PRESSURE THERMAL DECOMPOSITION OF BENZENE. Combustion Science and Technology, 2006, 178, 285-305.	1.2	37
32	Chemical kinetic simulations behind reflected shock waves. International Journal of Chemical Kinetics, 2006, 38, 75-97.	1.0	61
33	Ethane oxidation and pyrolysis from 5 bar to 1000 bar: Experiments and simulation. International Journal of Chemical Kinetics, 2005, 37, 306-331.	1.0	24
34	Microwaveâ€Assisted Combustion Synthesis of Tantalum Nitride in a Fluidized Bed. Journal of the American Ceramic Society, 2003, 86, 222-226.	1.9	6
35	High pressure, high temperature shock tube studies of ethane pyrolysis and oxidation. Physical Chemistry Chemical Physics, 2002, 4, 2001-2010.	1.3	32
36	Calibration of reaction temperatures in a very high pressure shock tube using chemical thermometers. International Journal of Chemical Kinetics, 2001, 33, 722-731.	1.0	67

3

#	Article	IF	CITATIONS
37	Modeling the combustion of toluene-butane blends. Proceedings of the Combustion Institute, 1998, 27, 337-344.	0.3	74
38	Computational Study on the Thermochemistry of Cyclopentadiene Derivatives and Kinetics of Cyclopentadienone Thermal Decomposition. Journal of Physical Chemistry A, 1998, 102, 1530-1541.	1.1	71