
Andrew J Hoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9058713/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Annexin A6 and NPC1 regulate LDL-inducible cell migration and distribution of focal adhesions. Scientific Reports, 2022, 12, 596.	1.6	11
2	Prostate cancer cell proliferation is influenced by LDL-cholesterol availability and cholesteryl ester turnover. Cancer & Metabolism, 2022, 10, 1.	2.4	16
3	Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer. BMC Medicine, 2022, 20, 112.	2.3	6
4	Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. International Journal of Molecular Sciences, 2022, 23, 7206.	1.8	7
5	Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene, 2022, 41, 4066-4078.	2.6	15
6	The diversity and breadth of cancer cell fatty acid metabolism. Cancer & Metabolism, 2021, 9, 2.	2.4	107
7	Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer. Nuclear Medicine and Biology, 2021, 93, 37-45.	0.3	2
8	Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nature Reviews Cancer, 2021, 21, 753-766.	12.8	167
9	A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD) drives prostate cancer growth. ELife, 2021, 10, .	2.8	16
10	Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver. Journal of Lipid Research, 2020, 61, 178-191.	2.0	23
11	Fatty Acid Oxidation Is an Adaptive Survival Pathway Induced in Prostate Tumors by HSP90 Inhibition. Molecular Cancer Research, 2020, 18, 1500-1511.	1.5	13
12	Insulin signaling requires glucose to promote lipid anabolism in adipocytes. Journal of Biological Chemistry, 2020, 295, 13250-13266.	1.6	31
13	Assessment of Periprostatic and Subcutaneous Adipose Tissue Lipolysis and Adipocyte Size from Men with Localized Prostate Cancer. Cancers, 2020, 12, 1385.	1.7	9
14	Metabolic Remodeling Induced by Adipocytes: A New Achilles' Heel in Invasive Breast Cancer?. Current Medicinal Chemistry, 2020, 27, 3984-4001.	1.2	20
15	Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. ELife, 2020, 9, .	2.8	104
16	Lipid and glucose metabolism in hepatocyte cell lines and primary mouse hepatocytes: a comprehensive resource for in vitro studies of hepatic metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E578-E589.	1.8	71
17	Extracellular Fatty Acids Are the Major Contributor to Lipid Synthesis in Prostate Cancer. Molecular Cancer Research, 2019, 17, 949-962.	1.5	65
18	Periâ€prostatic adipose tissue: the metabolic microenvironment of prostate cancer. BJU International, 2018, 121, 9-21.	1.3	60

Andrew J Hoy

#	Article	IF	CITATIONS
19	The inverse relationship between prostate specific antigen (PSA) and obesity. Endocrine-Related Cancer, 2018, 25, 933-941.	1.6	19
20	Heterogeneity of fatty acid metabolism in breast cancer cells underlies differential sensitivity to palmitateâ€induced apoptosis. Molecular Oncology, 2018, 12, 1623-1638.	2.1	40
21	Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS ONE, 2018, 13, e0201310.	1.1	18
22	Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism, 2017, 5, 1.	2.4	284
23	Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer & Metabolism, 2017, 5, 2.	2.4	51
24	Adipocyte–Tumor Cell Metabolic Crosstalk in Breast Cancer. Trends in Molecular Medicine, 2017, 23, 381-392.	3.5	105
25	Role of hepatic Annexin A6 in fatty acid-induced lipid droplet formation. Experimental Cell Research, 2017, 358, 397-410.	1.2	17
26	A distinct plasma lipid signature associated with poor prognosis in castrationâ€resistant prostate cancer. International Journal of Cancer, 2017, 141, 2112-2120.	2.3	54
27	Insulin and diet-induced changes in the ubiquitin-modified proteome of rat liver. PLoS ONE, 2017, 12, e0174431.	1.1	10
28	The plasma lipidome in castration-resistant prostate cancer Journal of Clinical Oncology, 2017, 35, 5055-5055.	0.8	0
29	Annexin A6 protein is downregulated in human hepatocellular carcinoma. Molecular and Cellular Biochemistry, 2016, 418, 81-90.	1.4	25
30	Targeting <scp>ASCT2</scp> â€mediated glutamine uptake blocks prostate cancer growth and tumour development. Journal of Pathology, 2015, 236, 278-289.	2.1	275
31	Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?. BioMed Research International, 2015, 2015, 1-17.	0.9	85
32	TPD52 expression increases neutral lipid storage within cultured cells. Journal of Cell Science, 2015, 128, 3223-38.	1.2	31
33	ATGL-mediated triglyceride turnover and the regulation of mitochondrial capacity in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E960-E970.	1.8	42
34	Fetuin B Is a Secreted Hepatocyte Factor Linking Steatosis to Impaired Glucose Metabolism. Cell Metabolism, 2015, 22, 1078-1089.	7.2	192
35	ldentification of dual PPARα/γ agonists and their effects on lipid metabolism. Bioorganic and Medicinal Chemistry, 2015, 23, 7676-7684.	1.4	12
36	Abstract B14: Targeting amino acid transport to block mTORC1 and cell cycle in prostate cancer. , 2015, , .		1

ANDREW J HOY

#	Article	IF	CITATIONS
37	Evidence That Diet-Induced Hyperleptinemia, but Not Hypothalamic Gliosis, Causes Ghrelin Resistance in NPY/AgRP Neurons of Male Mice. Endocrinology, 2014, 155, 2411-2422.	1.4	57
38	Inhibition of glutamine uptake regulates mTORC1, glutamine metabolism and cell growth in prostate cancer. Cancer & Metabolism, 2014, 2, P27.	2.4	0
39	Uptake of 25-hydroxyvitamin D by muscle and fat cells. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 232-236.	1.2	52
40	Compound K modulates fatty acidâ€induced lipid droplet formation and expression of proteins involved in lipid metabolism in hepatocytes. Liver International, 2013, 33, 1583-1593.	1.9	21
41	Autologous Pumpâ€Perfused Rat Hind Limb Preparation for Investigating Muscle Function and Metabolism <i>In Vivo</i> . Microcirculation, 2013, 20, 511-523.	1.0	5
42	Ceramides Contained in LDL Are Elevated in Type 2 Diabetes and Promote Inflammation and Skeletal Muscle Insulin Resistance. Diabetes, 2013, 62, 401-410.	0.3	240
43	Loss of Krüppel-Like Factor 3 (KLF3/BKLF) Leads to Upregulation of the Insulin-Sensitizing Factor Adipolin (FAM132A/CTRP12/C1qdc2). Diabetes, 2013, 62, 2728-2737.	0.3	41
44	Distinct roles of specific fatty acids in cellular processes: implications for interpreting and reporting experiments. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1-E3.	1.8	46
45	Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1315-E1328.	1.8	106
46	Regulation of plasma ceramide levels with fatty acid oversupply: evidence that the liver detects and secretes de novo synthesised ceramide. Diabetologia, 2012, 55, 2741-2746.	2.9	88
47	The evolution of insulin resistance in muscle of the glucose infused rat. Archives of Biochemistry and Biophysics, 2011, 509, 133-141.	1.4	15
48	Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice. Diabetologia, 2011, 54, 146-156.	2.9	110
49	Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1β involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia, 2011, 54, 1417-1426.	2.9	52
50	Adipose Triglyceride Lipase-Null Mice Are Resistant to High-Fat Diet–Induced Insulin Resistance Despite Reduced Energy Expenditure and Ectopic Lipid Accumulation. Endocrinology, 2011, 152, 48-58.	1.4	94
51	Acute or Chronic Upregulation of Mitochondrial Fatty Acid Oxidation Has No Net Effect on Whole-Body Energy Expenditure or Adiposity. Cell Metabolism, 2010, 11, 70-76.	7.2	133
52	Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E67-E75.	1.8	73
53	Overexpression of Carnitine Palmitoyltransferase-1 in Skeletal Muscle Is Sufficient to Enhance Fatty Acid Oxidation and Improve High-Fat Diet–Induced Insulin Resistance. Diabetes, 2009, 58, 550-558.	0.3	295
54	Insulin resistance is a cellular antioxidant defense mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17787-17792.	3.3	449

Andrew J Hoy

#	Article	IF	CITATIONS
55	New insight into the mechanism by which acute physical exercise ameliorates insulin resistance. Journal of Physiology, 2008, 586, 2251-2252.	1.3	5
56	Adipose Triglyceride Lipase Regulation of Skeletal Muscle Lipid Metabolism and Insulin Responsiveness. Molecular Endocrinology, 2008, 22, 1200-1212.	3.7	36
57	Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1358-E1364.	1.8	42
58	Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E471-E479.	1.8	105
59	Rosiglitazone Treatment Enhances Acute AMP-Activated Protein Kinase-Mediated Muscle and Adipose Tissue Glucose Uptake in High-Fat-Fed Rats. Diabetes, 2006, 55, 2797-2804.	0.3	59
60	Dietary fish oil dose- and time-response effects on cardiac phospholipid fatty acid composition. Lipids, 2004, 39, 955-961.	0.7	89