
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9058465/publications.pdf

Version: 2024-02-01

VE SONC

#	Article	IF	CITATIONS
1	High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochimica Acta, 2014, 116, 129-136.	2.6	252
2	Facile Method to Enhance the Adhesion of TiO ₂ Nanotube Arrays to Ti Substrate. ACS Applied Materials & Interfaces, 2014, 6, 8001-8005.	4.0	138
3	Electronic currents and the formation of nanopores in porous anodic alumina. Nanotechnology, 2009, 20, 475303.	1.3	127
4	Enhanced supercapacitance in anodic TiO ₂ nanotube films by hydrogen plasma treatment. Nanotechnology, 2013, 24, 455401.	1.3	127
5	Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Research Letters, 2013, 8, 391.	3.1	123
6	Enhanced Photoelectrochemical Water Splitting Performance of Anodic TiO ₂ Nanotube Arrays by Surface Passivation. ACS Applied Materials & Interfaces, 2014, 6, 17053-17058.	4.0	107
7	A novel nanostructure fabricated by an improved two-step anodizing technology. Electrochemistry Communications, 2013, 29, 71-74.	2.3	100
8	Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth. Monatshefte Für Chemie, 2008, 139, 999-1003.	0.9	93
9	Ionic liquid-based electrolytes for capacitor applications. Journal of Electroanalytical Chemistry, 2007, 601, 229-236.	1.9	84
10	Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions. Nanotechnology, 2015, 26, 145603.	1.3	83
11	Microwave Hydrothermal Synthesis, Structural Characterization, and Visible-Light Photocatalytic Activities of Single-Crystalline Bismuth Ferric Nanocrystals. Journal of the American Ceramic Society, 2011, 94, 2688-2693.	1.9	75
12	Forming Process of Anodic TiO ₂ Nanotubes under a Preformed Compact Surface Layer. Journal of the Electrochemical Society, 2014, 161, E135-E141.	1.3	72
13	Efficient and Flexible Thin Film Amorphous Silicon Solar Cells on Nanotextured Polymer Substrate Using Sol–gel Based Nanoimprinting Method. Advanced Functional Materials, 2017, 27, 1604720.	7.8	53
14	Fabrication and supercapacitive performance of long anodic TiO 2 nanotube arrays using constant current anodization. Electrochemistry Communications, 2016, 68, 23-27.	2.3	50
15	Quantitative relationship between nanotube length and anodizing current during constant current anodization. Electrochimica Acta, 2015, 180, 147-154.	2.6	48
16	Hydrothermal solid-gas route to TiO 2 nanoparticles/nanotube arrays for high-performance supercapacitors. Journal of Power Sources, 2017, 357, 230-240.	4.0	43
17	Electropolymerization of Aniline onto Anodic WO ₃ Film: An Approach to Extend Polyaniline Electroactivity Beyond pH 7. Journal of Physical Chemistry C, 2014, 118, 27449-27458.	1.5	42
18	Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages. Materials Research Bulletin, 2014, 57, 116-120.	2.7	41

YE SONG

#	Article	IF	CITATIONS
19	The effect of anions on the electrochemical properties of polyaniline for supercapacitors. Physical Chemistry Chemical Physics, 2017, 19, 14030-14041.	1.3	40
20	Oxygen evolution and porous anodic alumina formation. Materials Letters, 2008, 62, 4038-4040.	1.3	36
21	Morphology Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Interfaces, 2014, 6, 2285-2291.	4.0	34
22	On the Interfacial Adhesion between TiO ₂ Nanotube Array Layer and Ti Substrate. Langmuir, 2018, 34, 13888-13896.	1.6	34
23	Double-anode anodization of metal Ti in two beakers. Electrochemistry Communications, 2021, 125, 106991.	2.3	34
24	Fabrication and Formation Mechanism of Triple-Layered TiO2Nanotubes. Journal of the Electrochemical Society, 2013, 160, E125-E129.	1.3	33
25	Growth of anodic TiO2 nanotubes in mixed electrolytes and novel method to extend nanotube diameter. Electrochimica Acta, 2015, 160, 33-42.	2.6	31
26	Comparative study on the anodizing process of Ti and Zr and oxide morphology. Ceramics International, 2021, 47, 23332-23337.	2.3	28
27	Physicochemical properties of ionic liquids based on imidazolium/pyrrolidinium cations and maleate/phthalate anions. Solid State Ionics, 2008, 179, 516-521.	1.3	27
28	Waferâ€ s cale Highly Ordered Anodic Aluminum Oxide by Soft Nanoimprinting Lithography for Optoelectronics Light Management. Advanced Materials Interfaces, 2017, 4, 1601116.	1.9	27
29	Quantitative Analysis of Oxide Growth During Ti Galvanostatic Anodization. Journal of the Electrochemical Society, 2020, 167, 113501.	1.3	27
30	Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3. Nanoscale Research Letters, 2015, 10, 374.	3.1	26
31	A review: research progress on the formation mechanism of porous anodic oxides. Nanoscale Advances, 2022, 4, 322-333.	2.2	26
32	Effect of solvent on the structural features and the degree of ordering of pore arrays in porous anodic alumina. Journal of Electroanalytical Chemistry, 2012, 682, 110-115.	1.9	24
33	Efficient suppression of nanograss during porous anodic TiO 2 nanotubes growth. Applied Surface Science, 2014, 314, 505-509.	3.1	24
34	Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure. Applied Surface Science, 2013, 276, 711-716.	3.1	23
35	Synergistic effects of ZrO ₂ or B ₂ O ₃ on flameâ€retarded poly (butyl) Tj I	ETQ8110	.784314 rgBT
36	Synergistic effects of nanoâ€Mn _{0.4} Zn _{0.6} Fe ₂ O ₄ on	1.8	21

intumescent flameâ Eretarded polypropylene. Journal of Vinyl and Additive Technology, 2008, 14, 120-125.

1.8 21

#	Article	IF	CITATIONS
37	High-field anodization of aluminum in concentrated acid solutions and at higher temperatures. Journal of Electroanalytical Chemistry, 2012, 673, 24-31.	1.9	21
38	Characteristics of ionic liquid-based electrolytes for chip type aluminum electrolytic capacitors. Journal of Power Sources, 2006, 157, 610-615.	4.0	20
39	A novel nanostructure with hexagonal-prism pores fabricated under vacuum circumstance. Materials Research Bulletin, 2014, 50, 209-212.	2.7	20
40	Influence of anodizing voltage mode on the nanostructure of TiO2 nanotubes. Journal of Solid State Electrochemistry, 2014, 18, 141-148.	1.2	19
41	A general approach to the fabrication of Sn-doped TiO2 nanotube arrays with titanium vacancies for supercapacitors. Applied Surface Science, 2021, 570, 151175.	3.1	18
42	Effective approach to strengthening TiO2 nanotube arrays by using double or triple reinforcements. Applied Surface Science, 2015, 346, 172-176.	3.1	17
43	Electrochemical corrosion behaviors of titanium covered by various TiO2 nanotube films in artificial saliva. Journal of Materials Science, 2018, 53, 15130-15141.	1.7	17
44	The effect of atmospheric pressure on the growth rate of TiO2 nanotubes: Evidence against the field-assisted dissolution theory. Electrochemistry Communications, 2021, 132, 107146.	2.3	17
45	Fabrication of bundle-free TiO2 nanotube arrays with wide open top via a modified two-step anodization process. Materials Letters, 2013, 109, 211-213.	1.3	16
46	Debunking the formation mechanism of nanopores in four kinds of electrolytes without fluoride ion. Electrochemistry Communications, 2021, 129, 107093.	2.3	16
47	Fabrication of solid aluminum electrolytic capacitors utilizing conductive polyaniline solutions. Synthetic Metals, 2012, 162, 368-374.	2.1	15
48	Simulation and Separation of Anodizing Current-Time Curves, Morphology Evolution of TiO2Nanotubes Anodized at Various Temperatures. Journal of the Electrochemical Society, 2014, 161, H891-H895.	1.3	15
49	Fabrication of large diameter TiO 2 nanotubes for improved photoelectrochemical performance. Materials Research Bulletin, 2014, 60, 348-352.	2.7	15
50	Electrodeposition of polyaniline in long TiO2 nanotube arrays for high-areal capacitance supercapacitor electrodes. Journal of Solid State Electrochemistry, 2017, 21, 2349-2354.	1.2	14
51	Formation of TiO2 nanoribbons by anodization under high current density. Materials Research Bulletin, 2018, 103, 205-210.	2.7	14
52	Fast growth of highly ordered porous alumina films based on closed bipolar electrochemistry. Electrochemistry Communications, 2020, 119, 106822.	2.3	14
53	Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotube arrays. Journal of Solid State Electrochemistry, 2014, 18, 2609-2617.	1.2	13
54	Inverted nanotaper-based Ag film for optical absorption and SERS applications. Journal of Alloys and Compounds, 2015, 632, 634-638.	2.8	13

#	Article	IF	CITATIONS
55	Effect of water content on ionic current, electronic current, and nanotube morphology in Ti anodizing process. Journal of Solid State Electrochemistry, 2015, 19, 1403-1409.	1.2	13
56	Enlarged capacitance of TiO2 nanotube array electrodes treated by water soaking. Journal of Materials Science, 2017, 52, 3146-3152.	1.7	13
57	TiO2 nanotube arrays treated with (NH4)2TiF6 dilute solution for better supercapacitive performances. Electrochimica Acta, 2017, 253, 455-462.	2.6	12
58	Determination of the field strength and realization of the high-field anodization of aluminum. Physical Chemistry Chemical Physics, 2017, 19, 21696-21706.	1.3	11
59	Formation and evolution of anodic TiO ₂ nanotube embryos. Materials Research Express, 2017, 4, 065008.	0.8	9
60	Fabrication of highly ordered porous anodic alumina films in 0.75 M oxalic acid solution without using nanoimprinting. Materials Research Bulletin, 2019, 111, 24-33.	2.7	9
61	Formation of TiO2 nanopetal architectures originated from anodic titanium oxide nanotubes. Chemical Physics Letters, 2020, 759, 137950.	1.2	9
62	Formation and electrochemical properties of petal-Like architectures derived from titanium alloy oxide nanotubes for supercapacitors. Journal of Alloys and Compounds, 2019, 785, 19-24.	2.8	8
63	Enhanced electroactivity at physiological pH for polyaniline in three-dimensional titanium oxide nanotube matrix. Physical Chemistry Chemical Physics, 2014, 16, 15796.	1.3	7
64	Anodizations of Al and Ti in NH ₄ F or H ₃ PO ₄ Solutions and Formation of Porous Anodic Alumina with Special Morphology. Journal of Physical Chemistry C, 2018, 122, 549-556.	1.5	7
65	FeOOH Composite Electrode Based on TiN Nanopetals for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2020, 124, 15028-15035.	1.5	7
66	Synergistic Effects of Nano-BaWO ₄ on Intumescent Flame-Retarded Polypropylene. Polymer-Plastics Technology and Engineering, 2009, 48, 621-626.	1.9	6
67	Electroactivity of Polyaniline in High pH Solutions. Acta Chimica Sinica, 2013, 71, 999.	0.5	6
68	Templated deposition of multiscale periodic metallic nanodot arrays with sub-10 nm gaps on rigid and flexible substrates. Nanotechnology, 2014, 25, 465303.	1.3	5
69	Rapid Fabrication of Porous Anodic Alumina Films with Large Interpore Distances in an Ethylene Glycol and Ammonium Dihydrogen Phosphate-Based Electrolyte. Journal of the Electrochemical Society, 2018, 165, E856-E859.	1.3	5
70	What happens if anodic TiO2 nanotubes are soaked in H3PO4 at room temperature for a long time?. Electrochemistry Communications, 2019, 105, 106501.	2.3	5
71	Electrochemically Doped and Hydrogen Peroxide–Treated TiO ₂ ÂNanotube Arrays as an Electrode for Supercapacitor with Excellent Cycling Stability. Journal of the Electrochemical Society, 2019, 166, A1944-A1949.	1.3	5
72	Al-Doped TiO ₂ ÂNanotube Arrays Achieved by Using Low Boiling AlCl ₃ as a Dopant Source for Supercapacitors. Journal of the Electrochemical Society, 2019, 166, A3889-A3895.	1.3	5

#	Article	IF	CITATIONS
73	A simple strategy to increase the interfacial adhesion between TiO2 nanotube layer and Ti substrate. Journal of Alloys and Compounds, 2019, 772, 173-177.	2.8	5
74	The Holes Produced by Field-Assisted Dissolution and the Pores Produced by Oxygen Bubble Mould Effect. Journal of the Electrochemical Society, 2021, 168, 103501.	1.3	5
75	Anodization of dual-layer laminated aluminum foils: A facile route to through-hole porous anodic alumina templates. Journal of Alloys and Compounds, 2014, 614, 182-185.	2.8	4
76	Optoelectronic Devices: Waferâ€5cale Highly Ordered Anodic Aluminum Oxide by Soft Nanoimprinting Lithography for Optoelectronics Light Management (Adv. Mater. Interfaces 5/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	4
77	EQCM Studies of Polyaniline Film in a H ₂ SO ₄ Solution in Ethylene Glycol. Journal of the Electrochemical Society, 2018, 165, H711-H716.	1.3	4
78	Bipolar Electrochemical Anodization Route for the Fabrication of Porous Anodic Alumina with Nanopore Gradients. Langmuir, 2021, 37, 4340-4346.	1.6	4
79	Nâ€Đoped FeS2 Achieved by Thermal Annealing of Anodized Fe in Ammonia and Sulfur Atmosphere: Applications for Supercapacitors. Journal of the Electrochemical Society, 2021, 168, 080522.	1.3	4
80	Morphological comparison and growth mechanism of TiO2 nanotubes in HBF4 and NH4F electrolytes. Electrochemistry Communications, 2022, 135, 107200.	2.3	4
81	Double-walled structure of anodic TiO2 nanotubes in H3PO4/NH4F mixed electrolyte. Materials Research Express, 2018, 5, 045039.	0.8	3
82	Pore Embryos in Porous/Compact/Porous Anodic Alumina by Three-Step Anodization. Journal of the Electrochemical Society, 2018, 165, E231-E235.	1.3	3
83	Unraveling the six stages of the current–time curve and the bilayer nanotubes obtained by one-step anodization of Zr. Nanoscale Advances, 2022, 4, 582-589.	2.2	2
84	Effect of Dense Oxide Film Thickness on the Growth of Lower Layer Nanotubes. Journal of the Electrochemical Society, 2022, 169, 032502.	1.3	2
85	Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 18522-18532.	1.1	2
86	The Critical Role of the Solvent Effect on Titanium Anodizing Current. Journal of the Electrochemical Society, 2021, 168, 076501.	1.3	1
87	Preparation and supercapacitive properties of 3D flower-like iron metaphosphates based on anodization of iron. Thin Solid Films, 2022, 742, 139045.	0.8	1
88	Self-Ordering of Cell Arrangement in Porous Anodic Alumina. Advanced Materials Research, 2011, 233-235, 1819-1824.	0.3	0
89	Petal-Like Morphology on the Surface of Porous Anodic Alumina. Advanced Materials Research, 0, 194-196, 818-824.	0.3	0
90	Thermal Stability of Solid Aluminum Electrolytic Capacitors with Conductive Polyaniline Counter Electrode. Advanced Materials Research, 0, 512-515, 1018-1021.	0.3	0

#	Article	IF	CITATIONS
91	Kinetic Consideration of Energy Storage Process for Polyaniline in Salt Solutions. Advanced Materials Research, 0, 512-515, 948-952.	0.3	Ο
92	Solar Cells: Efficient and Flexible Thin Film Amorphous Silicon Solar Cells on Nanotextured Polymer Substrate Using Sol–gel Based Nanoimprinting Method (Adv. Funct. Mater. 13/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
93	Comparison of Formation Mechanism between Porous Anodic Sn Oxide and Anodic TiO ₂ Nanotubes. ECS Journal of Solid State Science and Technology, 2021, 10, 034008.	0.9	0
94	A comparative study of two-step anodization with one-step anodization at constant voltage. Nanotechnology, 2021, , .	1.3	0
95	Debunking the essential effect of temperature and voltage on the current curve and the nanotube morphology. RSC Advances, 2021, 12, 429-436.	1.7	0