Natalia Restrepo-Coupe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9058279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
2	Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 2016, 351, 972-976.	6.0	336
3	What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 2013, 182-183, 128-144.	1.9	255
4	Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. Journal of Geophysical Research, 2009, 114, .	3.3	220
5	Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Remote Sensing of Environment, 2013, 139, 97-115.	4.6	176
6	An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 2016, 13, 5895-5916.	1.3	159
7	Dry-season greening of Amazon forests. Nature, 2016, 531, E4-E5.	13.7	130
8	Net ecosystem production in a temperate pine plantation in southeastern Canada. Agricultural and Forest Meteorology, 2005, 128, 223-241.	1.9	118
9	Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A dataâ€model intercomparison. Global Change Biology, 2017, 23, 191-208.	4.2	106
10	Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 2014, 191, 33-50.	1.9	105
11	Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Global Change Biology, 2017, 23, 1240-1257.	4.2	102
12	Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agricultural and Forest Meteorology, 2008, 148, 748-760.	1.9	88
13	Fires increase Amazon forest productivity through increases in diffuse radiation. Geophysical Research Letters, 2015, 42, 4654-4662.	1.5	87
14	Soil moisture controls on phenology and productivity in a semi-arid critical zone. Science of the Total Environment, 2016, 568, 1227-1237.	3.9	87
15	Land surface phenological response to decadal climate variability across Australia using satellite remote sensing. Biogeosciences, 2014, 11, 5181-5198.	1.3	85
16	Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography. Biogeosciences, 2016, 13, 5085-5102.	1.3	75
17	Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3316-3329.	1.8	71
18	A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications. Environmental Modelling and Software, 2015, 64, 191-204.	1.9	67

NATALIA RESTREPO-COUPE

#	Article	IF	CITATIONS
19	Ageâ€dependent leaf physiology and consequences for crownâ€scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist, 2018, 219, 870-884.	3.5	66
20	Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytologist, 2018, 217, 1507-1520.	3.5	66
21	The importance of interacting climate modes on Australia's contribution to global carbon cycle extremes. Scientific Reports, 2016, 6, 23113.	1.6	65
22	Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytologist, 2018, 219, 914-931.	3.5	64
23	Seasonal and droughtâ€related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytologist, 2019, 222, 1284-1297.	3.5	64
24	Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nature Plants, 2020, 6, 1225-1230.	4.7	64
25	Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niñoâ€induced drought. New Phytologist, 2019, 223, 1253-1266.	3.5	58
26	Parameterization of an ecosystem light-use-efficiency model for predicting savanna GPP using MODIS EVI. Remote Sensing of Environment, 2014, 154, 253-271.	4.6	56
27	Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agricultural and Forest Meteorology, 2013, 182-183, 111-127.	1.9	55
28	Productivity and evapotranspiration of two contrasting semiarid ecosystems following the 2011 global carbon land sink anomaly. Agricultural and Forest Meteorology, 2016, 220, 151-159.	1.9	54
29	Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters. Global Change Biology, 2010, 16, 2476-2495.	4.2	53
30	Optimum air temperature for tropical forest photosynthesis: mechanisms involved and implications for climate warming. Environmental Research Letters, 2017, 12, 054022.	2.2	52
31	Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome. Agricultural and Forest Meteorology, 2008, 148, 1266-1279.	1.9	45
32	Spatial partitioning and temporal evolution of Australia's total water storage under extreme hydroclimatic impacts. Remote Sensing of Environment, 2016, 183, 43-52.	4.6	45
33	Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology, 2012, 18, 2882-2898.	4.2	34
34	Energy and water exchanges from a temperate pine plantation forest. Hydrological Processes, 2005, 19, 27-49.	1.1	33
35	Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts. Remote Sensing of Environment, 2018, 211, 26-37.	4.6	33
36	Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agricultural and Forest Meteorology, 2013, 182-183, 145-155.	1.9	30

#	Article	IF	CITATIONS
37	MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity. Biogeosciences, 2016, 13, 5587-5608.	1.3	30
38	Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America. Agricultural and Forest Meteorology, 2013, 182-183, 177-188.	1.9	29
39	Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems. Agricultural and Forest Meteorology, 2015, 213, 126-137.	1.9	29
40	Surface conductance for evapotranspiration of tropical forests: Calculations, variations, and controls. Agricultural and Forest Meteorology, 2019, 275, 317-328.	1.9	28
41	Cryptic phenology in plants: Case studies, implications, and recommendations. Global Change Biology, 2019, 25, 3591-3608.	4.2	26
42	Natural and drought scenarios in an east central Amazon forest: Fidelity of the Community Land Model 3.5 with three biogeochemical models. Journal of Geophysical Research, 2011, 116, .	3.3	23
43	Relative contributions of soil, foliar, and woody tissue respiration to total ecosystem respiration in four pine forests of different ages. Journal of Geophysical Research, 2010, 115, .	3.3	21
44	Multi-Scale Phenology of Temperate Grasslands: Improving Monitoring and Management With Near-Surface Phenocams. Frontiers in Environmental Science, 2019, 7, .	1.5	21
45	Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. Journal of Hydrology, 2016, 543, 818-831.	2.3	20
46	Carbon exchange in an Amazon forest: from hours to years. Biogeosciences, 2018, 15, 4833-4848.	1.3	20
47	Do plant species influence soil CO ₂ and N ₂ O fluxes in a diverse tropical forest?. Journal of Geophysical Research, 2010, 115, .	3.3	19
48	Carbon and greenhouse gas balances in an age sequence of temperate pine plantations. Biogeosciences, 2014, 11, 5399-5410.	1.3	19
49	Carbon, water and energy exchange dynamics of a young pine plantation forest during the initial fourteen years of growth. Forest Ecology and Management, 2018, 410, 12-26.	1.4	19
50	Estimation of latent heat flux over savannah vegetation across the North Australian Tropical Transect from multiple sensors and global meteorological data. Agricultural and Forest Meteorology, 2017, 232, 689-703.	1.9	18
51	Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements. Geoscientific Model Development, 2021, 14, 3269-3294.	1.3	15
52	Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fractionâ€Based Light Use Efficiency Model. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3014-3030.	1.3	14
53	Bridge to the future: Important lessons from 20Âyears of ecosystem observations made by the OzFlux network. Global Change Biology, 2022, 28, 3489-3514.	4.2	14
54	Behavior of multitemporal and multisensor passive microwave indices in Southern Hemisphere ecosystems. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2231-2244.	1.3	9

#	Article	IF	CITATIONS
55	Estimation of latent heat flux using satellite land surface temperature and a variational data assimilation scheme over a eucalypt forest savanna in Northern Australia. Agricultural and Forest Meteorology, 2019, 268, 341-353.	1.9	9
56	Chapter 6: Biogeochemical Cycles in the Amazon. , 2021, , .		7
57	Comparison of the performance of latent heat flux products over southern hemisphere forest ecosystems: estimating latent heat flux error structure using in situ measurements and the triple collocation method. International Journal of Remote Sensing, 2018, 39, 6300-6315.	1.3	6
58	Understanding water and energy fluxes in the Amazonia: Lessons from an observationâ€model intercomparison. Global Change Biology, 2021, 27, 1802-1819.	4.2	6
59	Simulation of Water Levels and Water Diversions in a Subtropical Coastal Wetland. Journal of Coastal Research, 2006, 222, 339-349.	0.1	5
60	Potential Natural Environments Based on Pedological Properties in the Coastal Conurbation of Subtropical Southeast Florida. Journal of Coastal Research, 2007, 232, 319-351.	0.1	5
61	Ecosystem–Atmosphere Exchanges of CO2 in Dense and Open â€~Terra Firme' Rainforests in Brazilian Amazonia. Ecological Studies, 2016, , 149-169.	0.4	4
62	Accurate Simulation of Both Sensitivity and Variability for Amazonian Photosynthesis: Is It Too Much to Ask?. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002555.	1.3	3
63	Chapter 6A: The Amazon Carbon Budget. , 2021, , .		3
64	Diurnal Changes in Leaf Photochemical Reflectance Index in Two Evergreen Forest Canopies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2236-2243.	2.3	2
65	Hyperspectral assesments of condition and species composition of Australian grasslands. , 2013, , .		1
66	Terrestrial total water storage dynamics of Australia's recent dry and wet events. , 2015, , .		1
67	Climate and leaf phenology controls on tropical forest photosynthesis. , 2016, , .		0
68	Implications of Diurnal Changes in Leaf PRI on Remote Measurements of Light Use Efficiency. , 2018, , .		0
69	MONITORING SPATIAL PATTERNS OF VEGETATION PHENOLOGY IN AN AUSTRALIAN TROPICAL TRANSECT USING MODIS EVI. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXIX-B8, 271-276.	0.2	0