
Flaminia Pavone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/90581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sexually Dimorphic Immune and Neuroimmune Changes Following Peripheral Nerve Injury in Mice: Novel Insights for Gender Medicine. International Journal of Molecular Sciences, 2021, 22, 4397.	1.8	16
2	Impact of caloric restriction on peripheral nerve injuryâ€induced neuropathic pain during ageing in mice. European Journal of Pain, 2020, 24, 374-382.	1.4	9
3	Revealing the Therapeutic Potential of Botulinum Neurotoxin Type A in Counteracting Paralysis and Neuropathic Pain in Spinally Injured Mice. Toxins, 2020, 12, 491.	1.5	15
4	Very Early Involvement of Innate Immunity in Peripheral Nerve Degeneration in SOD1-G93A Mice. Frontiers in Immunology, 2020, 11, 575792.	2.2	7
5	Innovative mouse model mimicking human-like features of spinal cord injury: efficacy of Docosahexaenoic acid on acute and chronic phases. Scientific Reports, 2019, 9, 8883.	1.6	12
6	Botulinum Toxin B Affects Neuropathic Pain but Not Functional Recovery after Peripheral Nerve Injury in a Mouse Model. Toxins, 2018, 10, 128.	1.5	13
7	Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience, 2017, 359, 82-91.	1.1	37
8	Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures. Frontiers in Cellular and Infection Microbiology, 2017, 7, 141.	1.8	44
9	17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical and proteomic investigation on sex-related differences in mice. Scientific Reports, 2016, 6, 18980.	1.6	64
10	Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain. European Journal of Pharmacology, 2016, 791, 377-388.	1.7	57
11	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
12	D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice. BioMed Research International, 2015, 2015, 1-10.	0.9	27
13	Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders. Toxins, 2015, 7, 3818-3844.	1.5	55
14	Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury. Neurobiology of Aging, 2015, 36, 352-364.	1.5	11
15	M2 Receptors Exert Analgesic Action on DRG Sensory Neurons by Negatively Modulating VR1 Activity. Journal of Cellular Physiology, 2014, 229, 783-790.	2.0	14
16	Higher pain perception and lack of recovery from neuropathic pain in females: A behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Pain, 2014, 155, 388-402.	2.0	104
17	ls BoNT/B useful for pain treatment?. Pain, 2014, 155, 649-650.	2.0	3
18	Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain, 2014, 155, 93-107.	2.0	98

#	Article	IF	CITATIONS
19	Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and μ opioid receptor expression in neuropathic mice. Brain, Behavior, and Immunity, 2013, 32, 40-50.	2.0	46
20	Botulinum neurotoxin A enhances the analgesic effects on inflammatory pain and antagonizes tolerance induced by morphine in mice. Brain, Behavior, and Immunity, 2012, 26, 489-499.	2.0	23
21	Modulation of nociception by social factors in rodents: contribution of the opioid system. Psychopharmacology, 2012, 224, 189-200.	1.5	17
22	Single Cycle Structure-Based Humanization of an Anti-Nerve Growth Factor Therapeutic Antibody. PLoS ONE, 2012, 7, e32212.	1.1	8
23	Intranasal "painless―Human Nerve Growth Factors Slows Amyloid Neurodegeneration and Prevents Memory Deficits in App X PS1 Mice. PLoS ONE, 2012, 7, e37555.	1.1	60
24	The Analgesic Effect on Neuropathic Pain of Retrogradely Transported botulinum Neurotoxin A Involves Schwann Cells and Astrocytes. PLoS ONE, 2012, 7, e47977.	1.1	132
25	The Novel Reversible Fatty Acid Amide Hydrolase Inhibitor ST4070 Increases Endocannabinoid Brain Levels and Counteracts Neuropathic Pain in Different Animal Models. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 188-195.	1.3	60
26	Cognitive and neural determinants of response strategy in the dual-solution plus-maze task. Learning and Memory, 2011, 18, 241-244.	0.5	26
27	Similar effects of nifedipine and hydralazine on anaesthesia and hypermotility induced by pentobarbitone in mice. Journal of Pharmacy and Pharmacology, 2011, 44, 453-455.	1.2	5
28	Nifedipine-morphine interaction: a further investigation on nociception and locomotor activity in mice. Journal of Pharmacy and Pharmacology, 2011, 44, 773-776.	1.2	10
29	Suppression of pentobarbitone-induced hyperactivity by past experience in mice. Journal of Pharmacy and Pharmacology, 2011, 41, 784-785.	1.2	2
30	Taking Pain Out of NGF: A "Painless―NGF Mutant, Linked to Hereditary Sensory Autonomic Neuropathy Type V, with Full Neurotrophic Activity. PLoS ONE, 2011, 6, e17321.	1.1	84
31	Changes induced by formalin pain in central $\hat{i}\pm 1$ -adrenoceptor density are modulated by adenosine receptor agonists. Journal of Neural Transmission, 2010, 117, 549-558.	1.4	7
32	Botulinum Neurotoxin for Pain Management: Insights from Animal Models. Toxins, 2010, 2, 2890-2913.	1.5	64
33	In vitro receptor binding properties of a "painless―NGF mutein, linked to hereditary sensory autonomic neuropathy type V. Biochemical and Biophysical Research Communications, 2010, 391, 824-829.	1.0	47
34	The Rac GTPase-activating bacterial protein toxin CNF1 induces analgesia up-regulating μ-opioid receptors. Pain, 2009, 145, 219-229.	2.0	24
35	The VGF-derived peptide TLQP-21: A new modulatory peptide for inflammatory pain. Neuroscience Letters, 2008, 441, 129-133.	1.0	38
36	The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2985-2990.	3.3	115

Flaminia Pavone

#	Article	IF	CITATIONS
37	Mild postnatal manipulation reduces proenkephalin mRNA in the striatum in developing mice and increases morphine conditioned place preference in adulthood. Pharmacology Biochemistry and Behavior, 2007, 87, 122-129.	1.3	7
38	The role of the vgf gene and VGF-derived peptides in nutrition and metabolism. Genes and Nutrition, 2007, 2, 169-180.	1.2	43
39	"Tissue―transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1357-1365.	0.5	67
40	Botulinum neurotoxins and formalin-induced pain: Central vs. peripheral effects in mice. Brain Research, 2006, 1082, 124-131.	1.1	71
41	Toxicity of botulinum neurotoxins in central nervous system of mice. Toxicon, 2003, 41, 475-481.	0.8	39
42	Formalin-induced pain and μ-opioid receptor density in brain and spinal cord are modulated by A1 and A2a adenosine agonists in mice. Brain Research, 2002, 956, 339-348.	1.1	29
43	Shuttle-Box Avoidance Learning in Mice: Improvement by Glucose Combined with Stimulant Drugs. Neurobiology of Learning and Memory, 2000, 73, 94-100.	1.0	12
44	Effects of postnatal manipulation on nociception and morphine sensitivity in adult mice. Developmental Brain Research, 1999, 117, 15-20.	2.1	22
45	Oxotremorine-induced modifications of the behavioral and neuroendocrine responses to formalin pain in male rats. Brain Research, 1999, 830, 292-300.	1.1	9
46	Attenuation by Nimodipine of Amitriptyline-Induced Avoidance Impairment in Mice. Pharmacology Biochemistry and Behavior, 1999, 62, 613-618.	1.3	8
47	Effects of the Novel Acetylcholinesterase InhibitorN-Octyl-1,2,3,4-tetrahydro-9-aminoacridine on Locomotor Activity and Avoidance Learning in Mice. Neurobiology of Learning and Memory, 1999, 71, 301-307.	1.0	4
48	MK-801-Induced Disruptions of One-Trial Inhibitory Avoidance Are Potentiated by Stress and Reversed by Naltrexone. Neurobiology of Learning and Memory, 1999, 72, 215-229.	1.0	30
49	Attenuation by glucose of the hyperactivity induced in mice by combined tripelennamine and morphine. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 135-139.	1.2	1
50	Shuttle-Box Avoidance Learning in Mice: Improvement by Combined Glucose and Tacrine. Neurobiology of Learning and Memory, 1998, 69, 204-210.	1.0	19
51	Studies on a new series of THA analogues: Effects of the aromatic residues that line the gorge of AChE. FEBS Letters, 1997, 409, 155-160.	1.3	7
52	Prevention of amitriptyline-induced avoidance impairment by tacrine in mice. Behavioural Brain Research, 1997, 89, 229-236.	1.2	12
53	Reunion of Separated Sibling Mice: Neurobiological and Behavioral Aspects. Neurobiology of Learning and Memory, 1996, 65, 9-16.	1.0	34
54	Time-related effects of stress on cholinergic sensitivity. Brain Research, 1996, 743, 333-336.	1.1	12

FLAMINIA PAVONE

#	Article	IF	CITATIONS
55	Effects of oxotremorine on inhibitory avoidance behaviour in two inbred strains of mice: interaction with 5-methoxy-NN-dimethyltriptamine. Psychopharmacology, 1993, 112, 249-252.	1.5	15
56	Endogenous opioids: A proximate reward mechanism for kin selection?. Behavioral and Neural Biology, 1993, 60, 79-83.	2.3	47
57	Attenuation of cholinergic analgesia by nifedipine. Brain Research, 1993, 623, 308-310.	1.1	4
58	Serotonergic influence on cholinergic-induced analgesia: differences in two inbred strains of mice. Brain Research, 1992, 577, 347-350.	1.1	7
59	Role of anxiety in subordinate male mice sexual behavior. Pharmacology Biochemistry and Behavior, 1992, 43, 181-185.	1.3	16
60	Amygdala and dorsal hippocampus lesions block the effects of GABAergic drugs on memory storage. Brain Research, 1991, 551, 104-109.	1.1	52
61	Reduction of oxotremorine-induced analgesia after chronic but not acute restraint stress. Psychopharmacology, 1991, 104, 57-61.	1.5	4
62	Deltorphin, a naturally occurring peptide with high selectivity for δopioid receptors, improves memory consolidation in two inbred strains of mice. Peptides, 1990, 11, 591-594.	1.2	27
63	Chronic administration of phosphatidylserine during ontogeny enhances subject-environment interactions and radial maze performance in C57BL/6 mice. Physiology and Behavior, 1990, 47, 755-760.	1.0	7
64	Age-related cholinergic drug effects on analgesia in two inbred strains of mice. Brain Research, 1990, 510, 150-153.	1.1	6
65	Effects of naloxone and naltrexone on memory consolidation in CD1 mice: Involvement of GABAergic mechanisms. Pharmacology Biochemistry and Behavior, 1989, 32, 563-567.	1.3	37
66	Pentobarbital-induced hyperactivity in mice: Negligible role of opioid mechanisms. Pharmacology Biochemistry and Behavior, 1989, 33, 927-929.	1.3	7
67	Phosphatidylserine administration during postnatal development improves memory in adult mice. Neuroscience Letters, 1989, 101, 229-233.	1.0	6
68	Effects of ethanol on passive avoidance behavior in the mouse: Involvement of GABAergic mechanisms. Pharmacology Biochemistry and Behavior, 1988, 29, 321-324.	1.3	44
69	Effects of flunitrazepam on passive avoidance behaviour in mice subjected to immobilization stress or familiarized with the testing apparatus. Behavioural Brain Research, 1986, 22, 91-95.	1.2	2
70	Dose- and strain-dependent effects of dermorphin and [D-Ala–2-D-Leu–5]enkephalin on passive avoidance behavior in mice Behavioral Neuroscience, 1985, 99, 1120-1127.	0.6	31
71	Effects of tifluadom on passive avoidance behaviour in DBA/2 mice. Behavioural Brain Research, 1985, 15, 177-181.	1.2	11
72	Morphine and memory in DBA/2 mice: Effects of stress and of prior experience. Behavioural Brain Research, 1984, 11, 3-10.	1.2	48

#	Article	IF	CITATIONS
73	Naltrexone-reversible effects of flunitrazepam on locomotor activity and passive avoidance behaviour in mice. European Journal of Pharmacology, 1984, 104, 111-116.	1.7	22
74	Naloxone-reversible effects of ethanol on passive avoidance behavior in mice. Physiological Psychology, 1983, 11, 291-295.	0.8	17