Haguy Wolfenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/905784/publications.pdf

Version: 2024-02-01

30 papers 2,132 citations

471061 17 h-index 610482 24 g-index

35 all docs 35 docs citations

35 times ranked 3240 citing authors

#	Article	IF	CITATIONS
1	Stem cell responses to stretch and strain. Trends in Cell Biology, 2022, 32, 4-7.	3.6	5
2	$\hat{l}_{\pm}\text{-Catenin}$ links integrin adhesions to F-actin to regulate ECM mechanosensing and rigidity dependence. Journal of Cell Biology, 2022, 221, .	2.3	2
3	The â€~Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers, 2021, 13, 4754.	1.7	10
4	Stopping transformed cancer cell growth by rigidity sensing. Nature Materials, 2020, 19, 239-250.	13.3	81
5	Breast Cancer-Derived Microparticles Reduce Cancer Cell Adhesion, an Effect Augmented by Chemotherapy. Cells, 2020, 9, 2269.	1.8	5
6	S-nitrosocysteine and glutathione depletion synergize to induce cell death in human tumor cells: Insights into the redox and cytotoxic mechanisms. Free Radical Biology and Medicine, 2020, 160, 566-574.	1.3	3
7	SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Molecular Cancer Research, 2020, 18, 1560-1573.	1.5	13
8	Cellular contractile forces are nonmechanosensitive. Science Advances, 2020, 6, eaaz6997.	4.7	37
9	Motion magnification analysis of microscopy videos of biological cells. PLoS ONE, 2020, 15, e0240127.	1.1	5
10	Motion magnification analysis of microscopy videos of biological cells. , 2020, 15, e0240127.		0
11	Motion magnification analysis of microscopy videos of biological cells. , 2020, 15, e0240127.		O
12	Motion magnification analysis of microscopy videos of biological cells. , 2020, 15, e0240127.		O
13	Motion magnification analysis of microscopy videos of biological cells. , 2020, 15, e0240127.		O
14	Force Loading During Mechanosensing Emerges from Non-Mechanosensitive Active Displacements. Biophysical Journal, 2019, 116, 379a.	0.2	0
15	Steps in Mechanotransduction Pathways that Control Cell Morphology. Annual Review of Physiology, 2019, 81, 585-605.	5.6	169
16	EGFR and HER2 activate rigidity sensing only on rigid matrices. Nature Materials, 2017, 16, 775-781.	13.3	68
17	Force-Induced Calpain Cleavage of Talin Is Critical for Growth, Adhesion Development, and Rigidity Sensing. Nano Letters, 2017, 17, 7242-7251.	4.5	44
18	Mechanosensing Controlled Directly by Tyrosine Kinases. Nano Letters, 2016, 16, 5951-5961.	4. 5	74

#	Article	lF	CITATION
19	\hat{l}_{\pm} -Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Molecular Biology of the Cell, 2016, 27, 3471-3479.	0.9	68
20	Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on softÂmatrices. Nature Cell Biology, 2016, 18, 33-42.	4.6	168
21	Molecular Occupancy of Nanodot Arrays. ACS Nano, 2016, 10, 4173-4183.	7.3	26
22	Early Events in Cell Spreading as a Model for Quantitative Analysis of Biomechanical Events. Biophysical Journal, 2014, 107, 2508-2514.	0.2	57
23	Appreciating force and shape — the rise of mechanotransduction in cell biology. Nature Reviews Molecular Cell Biology, 2014, 15, 825-833.	16.1	634
24	Dynamic Regulation of the Structure and Functions of Integrin Adhesions. Developmental Cell, 2013, 24, 447-458.	3.1	224
25	Differential Effect of Actomyosin Relaxation on the Dynamic Properties of Focal Adhesion Proteins. PLoS ONE, 2013, 8, e73549.	1.1	52
26	Accurate Quantification of Diffusion and Binding Kinetics of Nonâ€integral Membrane Proteins by FRAP. Traffic, 2011, 12, 1648-1657.	1.3	23
27	Actomyosin-generated tension controls the molecular kinetics of focal adhesions. Journal of Cell Science, 2011, 124, 1425-1432.	1.2	171
28	The heel and toe of the cell's foot: A multifaceted approach for understanding the structure and dynamics of focal adhesions. Cytoskeleton, 2009, 66, 1017-1029.	4.4	107
29	A Role for the Juxtamembrane Cytoplasm in the Molecular Dynamics of Focal Adhesions. PLoS ONE, 2009, 4, e4304.	1.1	69
30	Tumor Suppressor DAPK1 Catalyzes Adhesion Assembly on Rigid but Anoikis on Soft Matrices. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7