Zeynettin Akkus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9057801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine Learning for Medical Imaging. Radiographics, 2017, 37, 505-515.	1.4	994
2	Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, 2017, 30, 449-459.	1.6	758
3	A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow. Journal of the American College of Radiology, 2019, 16, 1318-1328.	0.9	170
4	Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence. Journal of Digital Imaging, 2017, 30, 469-476.	1.6	167
5	Toolkits and Libraries for Deep Learning. Journal of Digital Imaging, 2017, 30, 400-405.	1.6	116
6	Deep Learning in Radiology: Does One SizeÂFit All?. Journal of the American College of Radiology, 2018, 15, 521-526.	0.9	96
7	RIL-Contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning. Journal of Digital Imaging, 2019, 32, 571-581.	1.6	72
8	Far-Wall Pseudoenhancement During Contrast-Enhanced Ultrasound of the Carotid Arteries: Clinical Description andÂlnÂVitro Reproduction. Ultrasound in Medicine and Biology, 2012, 38, 593-600.	0.7	66
9	What Does Deep Learning See? Insights From a Classifier Trained to Predict Contrast Enhancement Phase From CT Images. American Journal of Roentgenology, 2018, 211, 1184-1193.	1.0	58
10	New Quantification Methods for Carotid Intra-plaque Neovascularization Using Contrast-Enhanced Ultrasound. Ultrasound in Medicine and Biology, 2014, 40, 25-36.	0.7	45
11	Artificial intelligence for detecting mitral regurgitation using electrocardiography. Journal of Electrocardiology, 2020, 59, 151-157.	0.4	42
12	Assessment of carotid atherosclerosis, intraplaque neovascularization, and plaque ulceration using quantitative contrast-enhanced ultrasound in asymptomatic patients with diabetes mellitus. European Heart Journal Cardiovascular Imaging, 2014, 15, 1213-1218.	0.5	36
13	Artificial Intelligence (AI)-Empowered Echocardiography Interpretation: A State-of-the-Art Review. Journal of Clinical Medicine, 2021, 10, 1391.	1.0	36
14	Differences Between Schizophrenic and Normal Subjects Using Network Properties from fMRI. Journal of Digital Imaging, 2018, 31, 252-261.	1.6	33
15	Assessment of subclinical atherosclerosis and intraplaque neovascularization using quantitative contrast-enhanced ultrasound in patients with familial hypercholesterolemia. Atherosclerosis, 2013, 231, 107-113.	0.4	31
16	Semiautomated Segmentation of Polycystic Kidneys in T2-Weighted MR Images. American Journal of Roentgenology, 2016, 207, 605-613.	1.0	31
17	Quantitative Analysis of Ultrasound Contrast Flow Behavior in Carotid Plaque Neovasculature. Ultrasound in Medicine and Biology, 2012, 38, 2072-2083.	0.7	26
18	Robust brain extraction tool for CT head images. Neurocomputing, 2020, 392, 189-195.	3.5	25

ZEYNETTIN AKKUS

#	Article	IF	CITATIONS
19	Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging. Cancer Imaging, 2015, 15, 12.	1.2	24
20	Assessment of subclinical atherosclerosis using contrast-enhanced ultrasound. European Heart Journal Cardiovascular Imaging, 2013, 14, 56-61.	0.5	17
21	Estimating 3D lumen centerlines of carotid arteries in free-hand acquisition ultrasound. International Journal of Computer Assisted Radiology and Surgery, 2012, 7, 207-215.	1.7	15
22	Carotid Intraplaque Neovascularization Quantification Software (CINQS). IEEE Journal of Biomedical and Health Informatics, 2015, 19, 332-338.	3.9	15
23	Lumen Segmentation and Motion Estimation in B-Mode and Contrast-Enhanced Ultrasound Images of the Carotid Artery in Patients With Atherosclerotic Plaque. IEEE Transactions on Medical Imaging, 2015, 34, 983-993.	5.4	15
24	Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning. Radiology: Artificial Intelligence, 2020, 2, e190183.	3.0	15
25	Fully Automated Carotid Plaque Segmentation in Combined Contrast-Enhanced and B-Mode Ultrasound. Ultrasound in Medicine and Biology, 2015, 41, 517-531.	0.7	14
26	Machine learning and augmented human intelligence use in histomorphology for haematolymphoid disorders. Pathology, 2021, 53, 400-407.	0.3	12
27	Automated measurement of total kidney volume from 3D ultrasound images of patients affected by polycystic kidney disease and comparison to MR measurements. Abdominal Radiology, 2022, 47, 2408-2419.	1.0	12
28	Motion compensation method using dynamic programming for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS). Proceedings of SPIE, 2012, , .	0.8	11
29	Extraction of brain tissue from CT head images using fully convolutional neural networks. , 2018, , .		10
30	Impact of gender on the density of intraplaque neovascularization: AÂquantitative contrast-enhanced ultrasound study. Atherosclerosis, 2014, 233, 461-466.	0.4	9
31	Quantification of bound microbubbles in ultrasound molecular imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1190-1200.	1.7	8
32	Fully Automated Segmentation of Bladder Sac and Measurement of Detrusor Wall Thickness from Transabdominal Ultrasound Images. Sensors, 2020, 20, 4175.	2.1	8
33	Dynamic assessment of carotid plaque motion. Ultrasound, 2010, 18, 140-147.	0.3	7
34	Joint intensity-and-point based registration of free-hand B-mode ultrasound and MRI of the carotid artery. Medical Physics, 2014, 41, 052904.	1.6	7
35	Reduction of unnecessary thyroid biopsies using deep learning. , 2019, , .		7
36	Classification of Monocytes, Promonocytes and Monoblasts Using Deep Neural Network Models: An Area of Unmet Need in Diagnostic Hematopathology. Journal of Clinical Medicine, 2021, 10, 2264.	1.0	5

ZEYNETTIN AKKUS

#	Article	IF	CITATIONS
37	Statistical segmentation of carotid plaque neovascularization. Proceedings of SPIE, 2013, , .	0.8	4
38	Registration of Free-Hand Ultrasound and MRI of Carotid Arteries through Combination of Point-Based and Intensity-Based Algorithms. Lecture Notes in Computer Science, 2012, , 131-140.	1.0	4
39	Fully Automated and Robust Tracking of Transient Waves inÂStructured Anatomies Using Dynamic Programming. Ultrasound in Medicine and Biology, 2016, 42, 2504-2512.	0.7	3
40	Predictive modeling, machine learning, and statistical issues. , 2019, , 151-168.		3
41	Atherosclerotic carotid lumen segmentation in combined B-mode and contrast enhanced ultrasound images. Proceedings of SPIE, 2014, , .	0.8	2
42	Thyroid Nodule Size as a Predictor of Malignancy in Follicular and Hurthle Neoplasms. Asian Pacific Journal of Cancer Prevention, 2021, 22, 2597-2602.	0.5	2
43	Motion compensation method for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS). , 2011, , .		1
44	Nonrigid motion compensation in B-mode and contrast enhanced ultrasound image sequences of the carotid artery. Proceedings of SPIE, 2014, , .	0.8	1
45	Fully automated carotid plaque segmentation in combined B-mode and contrast enhanced ultrasound. , 2014, , .		1
46	Fully Automated Mitral Inflow Doppler Analysis Using Deep Learning. , 2020, , .		1
47	Quantitative analysis of flow behavior of carotid plaque neovasculature. , 2011, , .		0
48	Analysis of neovascularization of atherosclerotic carotid plaques in contrast enhanced ultrasound. , 2012, , .		0
49	New quantification methods for carotid intraplaque neovascularization in contrast enhanced ultrasound. , 2013, , .		0