
Marc Pilon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9057428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A small molecule screen for paqr-2 suppressors identifies Tyloxapol as a membrane fluidizer for C. elegans and mammalian cells. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183959.	1.4	1
2	The C. elegans PAQR-2 and IGLR-2 membrane homeostasis proteins are uniquely essential for tolerating dietary saturated fats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158883.	1.2	14
3	Extensive transcription mis-regulation and membrane defects in AdipoR2-deficient cells challenged with saturated fatty acids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158884.	1.2	13
4	Paradigm shift: the primary function of the "Adiponectin Receptors―is to regulate cell membrane composition. Lipids in Health and Disease, 2021, 20, 43.	1.2	20
5	Treatment with HIV-Protease Inhibitor Nelfinavir Identifies Membrane Lipid Composition and Fluidity as a Therapeutic Target in Advanced Multiple Myeloma. Cancer Research, 2021, 81, 4581-4593.	0.4	8
6	A genetic titration of membrane composition in <i>Caenorhabditis elegans</i> reveals its importance for multiple cellular and physiological traits. Genetics, 2021, 219, .	1.2	13
7	Palmitic acid causes increased dihydroceramide levels when desaturase expression is directly silenced or indirectly lowered by silencing AdipoR2. Lipids in Health and Disease, 2021, 20, 173.	1.2	6
8	Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins. PLoS Genetics, 2020, 16, e1008975.	1.5	11
9	The Caenorhabditis elegans homolog of human copper chaperone Atox1, CUC-1, aids in distal tip cell migration. BioMetals, 2020, 33, 147-157.	1.8	3
10	Nelfinavir Overcomes Proteasome Inhibitor Resistance in Multiple Myeloma By Modulating Membrane Lipid Bilayer Composition and Fluidity. Blood, 2020, 136, 11-11.	0.6	0
11	Title is missing!. , 2020, 16, e1008975.		0
12	Title is missing!. , 2020, 16, e1008975.		0
13	Title is missing!. , 2020, 16, e1008975.		0
14	Title is missing!. , 2020, 16, e1008975.		0
15	Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans. Progress in Lipid Research, 2019, 76, 100996.	5.3	48
16	AdipoR1 and AdipoR2 maintain membrane fluidity in most human cell types and independently of adiponectin. Journal of Lipid Research, 2019, 60, 995-1004.	2.0	57
17	Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity. ELife, 2019, 8, .	2.8	22
18	Membrane Fluidity Is Regulated Cell Nonautonomously by <i>Caenorhabditis elegans</i> PAQR-2 and Its Mammalian Homolog AdipoR2. Genetics, 2018, 210, 189-201.	1.2	40

Marc Pilon

#	Article	IF	CITATIONS
19	FRAP: A Powerful Method to Evaluate Membrane Fluidity in Caenorhabditis elegans. Bio-protocol, 2018, 8, e2913.	0.2	14
20	Membrane fluidity is regulated by the C.Âelegans transmembrane protein FLD-1 and its human homologs TLCD1/2. ELife, 2018, 7, .	2.8	38
21	Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells. PLoS ONE, 2017, 12, e0170613.	1.1	9
22	The adiponectin receptor AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 prevent membrane rigidification by exogenous saturated fatty acids. PLoS Genetics, 2017, 13, e1007004.	1.5	47
23	Caenorhabditis elegans PAQR-2 and IGLR-2 Protect against Glucose Toxicity by Modulating Membrane Lipid Composition. PLoS Genetics, 2016, 12, e1005982.	1.5	53
24	Leveraging the withered tail tip phenotype in <i>C. elegans</i> to identify proteins that influence membrane properties. Worm, 2016, 5, e1206171.	1.0	14
25	Revisiting the membrane-centric view of diabetes. Lipids in Health and Disease, 2016, 15, 167.	1.2	67
26	A chemical screen to identify inducers of the mitochondrial unfolded protein response in <i>C. elegans</i> . Worm, 2015, 4, e1096490.	1.0	22
27	A Mutation in <i>Caenorhabditis elegans</i> NDUF-7 Activates the Mitochondrial Stress Response and Prolongs Lifespan via ROS and CED-4. G3: Genes, Genomes, Genetics, 2015, 5, 1639-1648.	0.8	32
28	Loss of HMC-CoA Reductase in C. elegans Causes Defects in Protein Prenylation and Muscle Mitochondria. PLoS ONE, 2014, 9, e100033.	1.1	20
29	Developmental genetics of the <i>Caenorhabditis elegans</i> pharynx. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 263-280.	5.9	10
30	PAQR-2 Regulates Fatty Acid Desaturation during Cold Adaptation in C. elegans. PLoS Genetics, 2013, 9, e1003801.	1.5	96
31	The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5981-5986.	3.3	111
32	PAQR-2 may be a regulator of membrane fluidity during cold adaptation. Worm, 2013, 2, e27123.	1.0	15
33	The gene <i>ten-1</i> contributes to axon regeneration accuracy following femtosecond laser axotomy in <i>C. elegans</i> . Proceedings of SPIE, 2012, , .	0.8	Ο
34	The Adiponectin Receptor Homologs in C. elegans Promote Energy Utilization and Homeostasis. PLoS ONE, 2011, 6, e21343.	1.1	53
35	The mevalonate pathway in C. elegans. Lipids in Health and Disease, 2011, 10, 243.	1.2	40
36	Hot water treatment prevents Aphelenchoides besseyi damage to Polianthes tuberosa crops in the Mekong Delta of Vietnam. Crop Protection, 2010, 29, 599-602.	1.0	7

Marc Pilon

#	Article	IF	CITATIONS
37	C. elegans ten-1 is synthetic lethal with mutations in cytoskeleton regulators, and enhances many axon guidance defective mutants. BMC Developmental Biology, 2010, 10, 55.	2.1	31
38	Genetics of Extracellular Matrix Remodeling During Organ Growth Using the <i>Caenorhabditis elegans</i> Pharynx Model. Genetics, 2010, 186, 969-982.	1.2	22
39	Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18285-18290.	3.3	84
40	Developmental genetics of the C. eleganspharyngeal neurons NSML and NSMR. BMC Developmental Biology, 2008, 8, 38.	2.1	34
41	Fishing lines, timeâ€delayed guideposts, and other tricks used by developing pharyngeal neurons in <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2008, 237, 2073-2080.	0.8	6
42	CARS microscopy for the monitoring of lipid storage in C. elegans. , 2008, , .		1
43	Monitoring of lipid storage in <i>Caenorhabditis elegans</i> using coherent anti-Stokes Raman scattering (CARS) microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14658-14663.	3.3	287
44	Caloric Restriction and Autophagy in <i>Caenorhabditis elegans</i> . Autophagy, 2007, 3, 51-53.	4.3	27
45	The C. elegans M3 neuron guides the growth cone of its sister cell M2 via the Krüppel-like zinc finger protein MNM-2. Developmental Biology, 2007, 311, 185-199.	0.9	12
46	The twisted pharynx phenotype in C. elegans. BMC Developmental Biology, 2007, 7, 61.	2.1	13
47	Dihydroxyacetoneâ€induced death is accompanied by advanced glycation endproduct formation in selected proteins of <i>Saccharomyces cerevisiae</i> and <i>Caenorhabditis elegans</i> . Proteomics, 2007, 7, 3764-3774.	1.3	18
48	Misexpression of acetylcholinesterases in the C. elegans pha-2 mutant accompanies ultrastructural defects in pharyngeal muscle cells. Developmental Biology, 2006, 297, 446-460.	0.9	9
49	CARS microscopy for the monitoring of fat deposition mechanisms in a living organism. , 2006, , .		0
50	C. elegans feeding defective mutants have shorter body lengths and increased autophagy. , 2006, 6, 39.		150
51	Development of Caenorhabditis elegans pharynx, with emphasis on its nervous system. Acta Pharmacologica Sinica, 2005, 26, 396-404.	2.8	12
52	The amazing world of nematodes. Trends in Parasitology, 2005, 21, 309-310.	1.5	0
53	ACaenorhabditis elegans model of the myosin heavy chain IIa E706R mutation. Annals of Neurology, 2005, 58, 442-448.	2.8	20
54	pha-2 encodes the C. elegans ortholog of the homeodomain protein HEX and is required for the formation of the pharyngeal isthmus. Developmental Biology, 2004, 272, 403-418.	0.9	33

MARC PILON

#	Article	IF	CITATIONS
55	A genetic analysis of axon guidance in the C. elegans pharynx. Developmental Biology, 2003, 260, 158-175.	0.9	24
56	ICA69null Nonobese Diabetic Mice Develop Diabetes, but Resist Disease Acceleration by Cyclophosphamide. Journal of Immunology, 2002, 168, 475-482.	0.4	26
57	Sustained Expression of the Novel EBV-Induced Zinc Finger Gene,ZNFEB, Is Critical for the Transition of B Lymphocyte Activation to Oncogenic Growth Transformation. Journal of Immunology, 2002, 168, 680-688.	0.4	8
58	Maternal and Zygotic Expression of a nanos-Class Gene in the Leech Helobdella robusta: Primordial Germ Cells Arise from Segmental Mesoderm. Developmental Biology, 2002, 245, 28-41.	0.9	71
59	The Diabetes Autoantigen ICA69 and Its <i>Caenorhabditis elegans</i> Homologue, <i>ric-19</i> , Are Conserved Regulators of Neuroendocrine Secretion. Molecular Biology of the Cell, 2000, 11, 3277-3288.	0.9	40
60	Early events leading to fate decisions during leech embryogenesis. Seminars in Cell and Developmental Biology, 1997, 8, 351-358.	2.3	2
61	Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappa B activation and to induction of cell surface markers. Journal of Virology, 1994, 68, 5602-5612.	1.5	193
62	The effects of promoter on transient expression in conifer cell lines. Theoretical and Applied Genetics, 1990, 79, 353-359.	1.8	67
63	Factors affecting transient gene expression in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiana) protoplasts. Theoretical and Applied Genetics, 1989, 78, 531-536.	1.8	63
64	Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Reports, 1988, 7, 481-484.	2.8	69
65	Effects of abscisic acid and analogues on the maturation of white spruce (Picea glauca) somatic	1.7	98