Clement Papadacci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9056851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smart Ultrasound Device for Non-Invasive Real-Time Myocardial Stiffness Quantification of the Human Heart. IEEE Transactions on Biomedical Engineering, 2022, 69, 42-52.	2.5	12
2	Boosting transducer matrix sensitivity for 3D large field ultrasound localization microscopy using a multi-lens diffracting layer: a simulation study. Physics in Medicine and Biology, 2022, 67, 085009.	1.6	4
3	Coronary Flow Assessment Using 3-Dimensional Ultrafast Ultrasound Localization Microscopy. JACC: Cardiovascular Imaging, 2022, 15, 1193-1208.	2.3	23
4	In vivo whole brain microvascular imaging in mice using transcranial 3D Ultrasound Localization Microscopy. EBioMedicine, 2022, 79, 103995.	2.7	45
5	Ultrafast Ultrasound Imaging in PediatricÂand Adult Cardiology. JACC: Cardiovascular Imaging, 2020, 13, 1771-1791.	2.3	54
6	4D Ultrafast Ultrasound Imaging of Naturally Occurring Shear Waves in the Human Heart. IEEE Transactions on Medical Imaging, 2020, 39, 4436-4444.	5.4	22
7	4D simultaneous tissue and blood flow Doppler imaging: revisiting cardiac Doppler index with single heart beat 4D ultrafast echocardiography. Physics in Medicine and Biology, 2019, 64, 085013.	1.6	20
8	Multi-plane-transmit (MPT) Volumetric Imaging based on A Matrix Array: Experimental Validation. , 2019, , .		0
9	Arterial Stiffening with Ultrafast Ultrasound Imaging Gives NewÂlnsight into Arterial Phenotype of Vascular Ehlers-Danlos MouseÂModels. Ultraschall in Der Medizin, 2019, 40, 734-742.	0.8	15
10	Cardiac Lesion Mapping <italic>In Vivo</italic> Using Intracardiac Myocardial Elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 14-20.	1.7	8
11	Non-invasive Evaluation of Aortic Stiffness Dependence with Aortic Blood Pressure and Internal Radius by Shear Wave Elastography and Ultrafast Imaging. Irbm, 2018, 39, 9-17.	3.7	0
12	Quantitative Cardiac Output Assessment Using 4D Ultrafast Doppler Imaging: An in Vitro Study. , 2018, ,		1
13	3D Myocardial Elastography <italic>In Vivo</italic> . IEEE Transactions on Medical Imaging, 2017, 36, 618-627.	5.4	28
14	Feasibility and Validation of 4-D Pulse Wave Imaging in Phantoms and <i>In Vivo</i> . IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1305-1317.	1.7	21
15	Imaging the dynamics of cardiac fiber orientation in vivo using 3D Ultrasound Backscatter Tensor Imaging. Scientific Reports, 2017, 7, 830.	1.6	57
16	3D Quasi-Static Ultrasound Elastography With Plane Wave <italic>In Vivo</italic> . IEEE Transactions on Medical Imaging, 2017, 36, 357-365.	5.4	38
17	Optimization of transmit parameters for two-dimensional cardiac strain estimation with coherent compounding in silico, in vitro, and in vivo. , 2016, , .		1
18	Feasibility and validation of 4D Pulse wave Imaging (PWI) in vitro: 3D automated estimation of regional		1

Pulse Wave Velocity vector., 2016,,.

CLEMENT PAPADACCI

#	Article	IF	CITATIONS
19	Experimental study on the effect of the cylindrical vessel geometry on arterial shear wave elastography. , 2015, , .		0
20	Myocardial stiffness assessment in pediatric cardiology using shear wave imaging. , 2015, , .		0
21	3-D ultrafast doppler imaging applied to the noninvasive mapping of blood vessels in Vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1467-1472.	1.7	95
22	4-D ultrafast shear-wave imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1059-1065.	1.7	83
23	A versatile and experimentally validated finite element model to assess the accuracy of shear wave elastography in a bounded viscoelastic medium. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 439-450.	1.7	23
24	3D ultrafast ultrasound imaging <i>in vivo</i> . Physics in Medicine and Biology, 2014, 59, L1-L13.	1.6	290
25	Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization. Physics in Medicine and Biology, 2014, 59, 6923-6940.	1.6	66
26	Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue. , 2014, , .		3
27	Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 986-996.	1.7	40
28	High-contrast ultrafast imaging of the heart. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 288-301.	1.7	200
29	Supersonic Shear Wave Imaging to Assess Arterial Nonlinear Behavior and Anisotropy: Proof of Principle via <i>Ex Vivo</i> Testing of the Horse Aorta. Advances in Mechanical Engineering, 2014, 6, 272586.	0.8	24
30	Non invasive and real time evaluation of mice aortic stiffness by ultrafast ultrasound imaging: a new tool for evaluation of preclinical vascular disease models. European Heart Journal, 2013, 34, P2527-P2527.	1.0	4
31	Towards backscatter tensor imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues. , 2013, , .		3
32	Supersonic shear wave imaging to assess arterial anisotropy: Ex-vivo testing of the horse aorta. , 2013, , .		3
33	Shear Wave Imaging of the heart using a cardiac phased array with coherent spatial compound. , 2012, ,		8