
Cecilia Mondelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9056651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Florol via Prins cyclization over heterogeneous catalysts. Journal of Catalysis, 2022, 405, 288-302.	3.1	3
2	Atomic Pd-promoted ZnZrO solid solution catalyst for CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 2022, 304, 120994.	10.8	59
3	Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In ₂ O ₃ atalyzed CO ₂ Hydrogenation. Advanced Energy Materials, 2022, 12, .	10.2	34
4	ZnO-Promoted Inverse ZrO ₂ –Cu Catalysts for CO ₂ -Based Methanol Synthesis under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 81-90.	3.2	12
5	Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis. Small Methods, 2021, 5, 2001231.	4.6	2
6	Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation. Nature Communications, 2021, 12, 1960.	5.8	90
7	Inside Back Cover: Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis (Small Methods 5/2021). Small Methods, 2021, 5, 2170021.	4.6	0
8	Impact of hybrid CO2-CO feeds on methanol synthesis over In2O3-based catalysts. Applied Catalysis B: Environmental, 2021, 285, 119878.	10.8	30
9	Methanol Synthesis by Hydrogenation of Hybrid CO ₂ â^'CO Feeds. ChemSusChem, 2021, 14, 2914-2923.	3.6	8
10	Catalytic processing of plastic waste on the rise. CheM, 2021, 7, 1487-1533.	5.8	236
11	Sustainability Assessment of Thermocatalytic Conversion of CO ₂ to Transportation Fuels, Methanol, and 1-Propanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 10591-10600.	3.2	20
12	Role of Zirconia in Indium Oxide-Catalyzed CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2020, 10, 1133-1145.	5.5	177
13	Methanol as a Hydrogen Carrier: Kinetic and Thermodynamic Drivers for its CO ₂ â€Based Synthesis and Reforming over Heterogeneous Catalysts. ChemSusChem, 2020, 13, 6330-6337.	3.6	18
14	Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chemical Society Reviews, 2020, 49, 3764-3782.	18.7	163
15	Hydrocracking of hexadecane to jet fuel components over hierarchical Ru-modified faujasite zeolite. Fuel, 2020, 278, 118193.	3.4	20
16	CO 2 â€Promoted Catalytic Process Forming Higher Alcohols with Tunable Nature at Record Productivity. ChemCatChem, 2020, 12, 2732-2744.	1.8	14
17	Development of In2O3-based Catalysts for CO2-based Methanol Production. Chimia, 2020, 74, 257.	0.3	13
18	Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nature Communications, 2019, 10, 3377.	5.8	261

CECILIA MONDELLI

#	Article	IF	CITATIONS
19	Catalytic Byproduct Valorization in Future Biorefineries. ACS Sustainable Chemistry and Engineering, 2019, 7, 2878-2878.	3.2	4
20	Impact of carrier acidity on the conversion of syngas to higher alcohols over zeolite-supported copper-iron catalysts. Journal of Catalysis, 2019, 371, 116-125.	3.1	20
21	Plant-to-planet analysis of CO ₂ -based methanol processes. Energy and Environmental Science, 2019, 12, 3425-3436.	15.6	160
22	Environmental and economical perspectives of a glycerol biorefinery. Energy and Environmental Science, 2018, 11, 1012-1029.	15.6	162
23	Towards sustainable manufacture of epichlorohydrin from glycerol using hydrotalcite-derived basic oxides. Green Chemistry, 2018, 20, 148-159.	4.6	44
24	Carbon nanofibres-supported KCoMo catalysts for syngas conversion into higher alcohols. Catalysis Science and Technology, 2018, 8, 187-200.	2.1	24
25	SCS Seminar 2018/1: Catalysis Across Scales. Chimia, 2018, 72, 822.	0.3	1
26	Techno-Economic Analysis of a Glycerol Biorefinery. ACS Sustainable Chemistry and Engineering, 2018, 6, 16563-16572.	3.2	64
27	Role of Carbonaceous Supports and Potassium Promoter on Higher Alcohols Synthesis over Copper–Iron Catalysts. ACS Catalysis, 2018, 8, 9604-9618.	5.5	58
28	Enhanced Base-Free Formic Acid Production from CO2 on Pd/g-C3 N4 by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2841-2841.	3.6	0
29	Enhanced Baseâ€Free Formic Acid Production from CO ₂ on Pd/g ₃ N ₄ by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2859-2869.	3.6	47
30	Bifunctional Hierarchical Zeolite‣upported Silver Catalysts for the Conversion of Glycerol to Allyl Alcohol. ChemCatChem, 2017, 9, 2195-2202.	1.8	20
31	Design of a technical Mg–Al mixed oxide catalyst for the continuous manufacture of glycerol carbonate. Journal of Materials Chemistry A, 2017, 5, 16200-16211.	5.2	46
32	Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 2017, 46, 1358-1426.	18.7	513
33	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation. Angewandte Chemie, 2016, 128, 6369-6373.	1.6	78
34	Titelbild: Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation (Angew. Chem. 21/2016). Angewandte Chemie, 2016, 128, 6215-6215.	1.6	0
35	Catalyst and Process Design for the Continuous Manufacture of Rare Sugar Alcohols by Epimerization-Hydrogenation of Aldoses. ChemSusChem, 2016, 9, 3373-3373.	3.6	2
36	Glycerol oxidehydration to pyruvaldehyde over silver-based catalysts for improved lactic acid production. Green Chemistry, 2016, 18, 4682-4692.	4.6	32

#	Article	IF	CITATIONS
37	Operando Synchrotron Xâ€ray Powder Diffraction and Modulatedâ€Excitation Infrared Spectroscopy Elucidate the CO ₂ Promotion on a Commercial Methanol Synthesis Catalyst. Angewandte Chemie - International Edition, 2016, 55, 11031-11036.	7.2	64
38	Operando Synchrotron Xâ€ray Powder Diffraction and Modulatedâ€Excitation Infrared Spectroscopy Elucidate the CO ₂ Promotion on a Commercial Methanol Synthesis Catalyst. Angewandte Chemie, 2016, 128, 11197-11202.	1.6	51
39	Catalyst and Process Design for the Continuous Manufacture of Rare Sugar Alcohols by Epimerization–Hydrogenation of Aldoses. ChemSusChem, 2016, 9, 3407-3418.	3.6	23
40	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 6261-6265.	7.2	769
41	Impact of Daily Startup–Shutdown Conditions on the Production of Solar Methanol over a Commercial Cu–ZnO–Al ₂ O ₃ Catalyst. Energy Technology, 2016, 4, 565-572.	1.8	14
42	Hierarchical NaY Zeolites for Lactic Acid Dehydration to Acrylic Acid. ChemCatChem, 2016, 8, 1507-1514.	1.8	38
43	Selective dehydrogenation of bioethanol to acetaldehyde over basic USY zeolites. Catalysis Science and Technology, 2016, 6, 2706-2714.	2.1	14
44	Environmental and economic assessment of glycerol oxidation to dihydroxyacetone over technical iron zeolite catalysts. Reaction Chemistry and Engineering, 2016, 1, 106-118.	1.9	30
45	Deactivation mechanisms of tin-zeolites in biomass conversions. Green Chemistry, 2016, 18, 1249-1260.	4.6	80
46	Alkaline-assisted stannation of beta zeolite as a scalable route to Lewis-acid catalysts for the valorisation of renewables. New Journal of Chemistry, 2016, 40, 4136-4139.	1.4	17
47	Gas-Phase Oxidation of Glycerol to Dihydroxyacetone over Tailored Iron Zeolites. ACS Catalysis, 2015, 5, 1453-1461.	5.5	78
48	Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over Cu-Ni-Al Catalysts. ChemCatChem, 2015, 7, 1503-1503.	1.8	1
49	Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites. Journal of Catalysis, 2015, 330, 93-105.	3.1	34
50	Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chemical Society Reviews, 2015, 44, 7025-7043.	18.7	175
51	Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over Cu–Ni–Al Catalysts. ChemCatChem, 2015, 7, 1551-1558.	1.8	26
52	Zinc-Rich Copper Catalysts Promoted by Gold for Methanol Synthesis. ACS Catalysis, 2015, 5, 5607-5616.	5.5	78
53	Environmental and economic assessment of lactic acid production from glycerol using cascade bio- and chemocatalysis. Energy and Environmental Science, 2015, 8, 558-567.	15.6	134
54	When catalyst meets reactor: continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catalysis Science and Technology, 2015, 5, 142-149.	2.1	35

CECILIA MONDELLI

#	Article	IF	CITATIONS
55	Hierarchical Sn-MFI zeolites prepared by facile top-down methods for sugar isomerisation. Catalysis Science and Technology, 2014, 4, 2302.	2.1	99
56	Structural Changes of a U ₃ O ₈ /ZrO ₂ Catalyst During HCl Oxidation – a HAADF‧TEM Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 768-773.	0.6	5
57	A continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chemistry, 2014, 16, 1176-1186.	4.6	59
58	Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation. Green Chemistry, 2014, 16, 589-593.	4.6	42
59	Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1–C4 alkyl lactates. Journal of Molecular Catalysis A, 2014, 388-389, 141-147.	4.8	39
60	CuCrO ₂ Delafossite: A Stable Copper Catalyst for Chlorine Production. Angewandte Chemie - International Edition, 2013, 52, 9772-9775.	7.2	72
61	Solid-State Chemistry of Cuprous Delafossites: Synthesis and Stability Aspects. Chemistry of Materials, 2013, 25, 4423-4435.	3.2	114
62	HCl Oxidation on IrO ₂ -Based Catalysts: From Fundamentals to Scale-Up. ACS Catalysis, 2013, 3, 2813-2822.	5.5	52
63	Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation. Catalysis Science and Technology, 2013, 3, 2555.	2.1	26
64	Do observations on surface coverage-reactivity correlations always describe the true catalytic process? A case study on ceria. Journal of Catalysis, 2013, 297, 119-127.	3.1	42
65	Structural properties of alumina- and silica-supported Iridium catalysts and their behavior in the enantioselective hydrogenation of ethyl pyruvate. Applied Catalysis A: General, 2013, 451, 14-20.	2.2	12
66	Supported CeO2 catalysts in technical form for sustainable chlorine production. Applied Catalysis B: Environmental, 2013, 132-133, 123-131.	10.8	64
67	Depleted uranium catalysts for chlorine production. Chemical Science, 2013, 4, 2209.	3.7	45
68	Industrial RuO ₂ â€Based Deacon Catalysts: Carrier Stabilization and Active Phase Content Optimization. ChemCatChem, 2013, 5, 748-756.	1.8	39
69	Highly Selective Lewis Acid Sites in Desilicated MFI Zeolites for Dihydroxyacetone Isomerization to Lactic Acid. ChemSusChem, 2013, 6, 831-839.	3.6	105
70	Titelbild: CuCrO2Delafossite: A Stable Copper Catalyst for Chlorine Production (Angew. Chem.) Tj ETQq0 0 0 rg	;BT /Overlo 1.0	ck 10 Tf 50 1
71	Development of Industrial Catalysts for Sustainable Chlorine Production. Chimia, 2012, 66, 694.	0.3	4

 Kinetic aspects and deactivation behaviour of chromia-based catalysts in hydrogen chloride oxidation. Catalysis Science and Technology, 2012, 2, 2057. 	48
---	----

CECILIA MONDELLI

#	Article	IF	CITATIONS
73	Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned. ACS Catalysis, 2012, 2, 1487-1499.	5.5	163
74	An integrated approach to Deacon chemistry on RuO2-based catalysts. Journal of Catalysis, 2012, 285, 273-284.	3.1	111
75	Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2. Journal of Catalysis, 2012, 286, 287-297.	3.1	185
76	A delafossite-based copper catalyst for sustainable Cl2 production by HCl oxidation. Chemical Communications, 2011, 47, 7173.	2.2	50
77	Mechanism–Performance Relationships of Metal Oxides in Catalyzed HCl Oxidation. ACS Catalysis, 2011, 1, 583-590.	5.5	66
78	Temporal Analysis of Products Study of HCl Oxidation on Copper- and Ruthenium-Based Catalysts. Journal of Physical Chemistry C, 2011, 115, 1056-1063.	1.5	62
79	Sustainable chlorine recycling via catalysed HCl oxidation: from fundamentals to implementation. Energy and Environmental Science, 2011, 4, 4786.	15.6	179
80	Redox properties of supported copper catalysts studied in liquid and gas phase by in situ ATR-IR and XAS. Catalysis Today, 2011, 178, 124-131.	2.2	10
81	Shaped RuO ₂ /SnO ₂ –Al ₂ O ₃ Catalyst for Largeâ€6cale Stable Cl ₂ Production by HCl Oxidation. ChemCatChem, 2011, 3, 657-660.	1.8	80
82	A novel class of fluorinated cinchona alkaloids as surface modifiers for the enantioselective heterogeneous hydrogenation of α-ketoesters. Journal of Molecular Catalysis A, 2010, 327, 87-91.	4.8	28
83	Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 5307.	1.3	54
84	Fundamental Aspects of the Chiral Modification of Platinum with Peptides: Asymmetric Induction in Hydrogenation of Activated Ketones. Journal of Physical Chemistry C, 2009, 113, 15246-15259.	1.5	16
85	Supported Rh catalysts for methane partial oxidation prepared by OM-CVD of Rh(acac)(CO)2. Applied Catalysis A: General, 2008, 346, 126-133.	2.2	30
86	Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol: An in situ ATR-IR spectroscopy study. Journal of Catalysis, 2008, 258, 170-176.	3.1	41
87	Structure Sensitivity of Palladium-Catalyzed Liquid-Phase Alcohol Oxidation. A Combined <1>in situ 1 ATR-IR and Selective Site Blocking Study. Chimia, 2007, 61, 175-178.	0.3	2
88	Combined liquid-phase ATR-IR and XAS study of the Bi-promotion in the aerobic oxidation of benzyl alcohol over Pd/Al2O3. Journal of Catalysis, 2007, 252, 77-87.	3.1	85
89	Discrimination of Active Palladium Sites in Catalytic Liquid-Phase Oxidation of Benzyl Alcohol. Journal of Physical Chemistry B, 2006, 110, 22982-22986.	1.2	115
90	An operando DRIFTS–MS study on model Ce0.5Zr0.5O2 redox catalyst: A critical evaluation of DRIFTS and MS data on CO abatement reaction. Catalysis Today, 2006, 113, 81-86.	2.2	37

#	Article	IF	CITATIONS
91	Fast transient infrared studies in material science: development of a novel low dead-volume, high temperature DRIFTS cell. Talanta, 2005, 66, 674-682.	2.9	43