
Jonathan C Knowles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9056488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sol–gel based materials for biomedical applications. Progress in Materials Science, 2016, 77, 1-79.	16.0	608
2	Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials, 2004, 25, 1279-1287.	5.7	480
3	Phosphate based glasses for biomedical applications. Journal of Materials Chemistry, 2003, 13, 2395.	6.7	371
4	Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials, 2004, 25, 491-499.	5.7	334
5	Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. Journal of Biomedical Materials Research - Part A, 2006, 79A, 643-649.	2.1	320
6	Naturally and synthetic smart composite biomaterials for tissue regeneration. Advanced Drug Delivery Reviews, 2013, 65, 471-496.	6.6	308
7	Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass® composites. Biomaterials, 2008, 29, 1750-1761.	5.7	305
8	Magnesium incorporation into hydroxyapatite. Biomaterials, 2011, 32, 1826-1837.	5.7	296
9	Bioactive functional materials: a perspective on phosphate-based glasses. Journal of Materials Chemistry, 2009, 19, 690-701.	6.7	289
10	Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. International Endodontic Journal, 2001, 34, 120-132.	2.3	276
11	Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials, 2005, 26, 2247-2254.	5.7	255
12	Collagen — Emerging collagen based therapies hit the patient. Advanced Drug Delivery Reviews, 2013, 65, 429-456.	6.6	249
13	Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Scientific Reports, 2014, 4, 5193.	1.6	243
14	Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial. Advanced Functional Materials, 2006, 16, 1529-1535.	7.8	237
15	Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses. Advanced Drug Delivery Reviews, 2013, 65, 405-420.	6.6	223
16	Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants. Biomaterials, 2004, 25, 3351-3358.	5.7	212
17	Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. International Endodontic Journal, 2001, 34, 113-119.	2.3	203
18	Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials, 2004, 25, 3223-3232.	5.7	202

#	Article	IF	CITATIONS
19	Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. Journal of Biomedical Materials Research Part B, 2002, 63, 1-9.	3.0	185
20	Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter, 2006, 2, 986.	1.2	179
21	Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. Journal of Materials Science: Materials in Medicine, 2005, 16, 189-195.	1.7	176
22	Household Income and Child Schooling in Vietnam. World Bank Economic Review, 1999, 13, 211-256.	1.4	172
23	Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS Nano, 2017, 11, 8560-8578.	7.3	172
24	An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 2010, 31, 3885-3893.	5.7	168
25	Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Journal of Biomedical Materials Research - Part A, 2005, 72A, 136-145.	2.1	167
26	Tissue engineering in dentistry. Journal of Dentistry, 2014, 42, 915-928.	1.7	167
27	Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. Journal of Materials Science: Materials in Medicine, 2000, 11, 615-620.	1.7	161
28	Antimicrobial Galliumâ€Ðoped Phosphateâ€Based Glasses. Advanced Functional Materials, 2008, 18, 732-741.	7.8	161
29	Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomaterialia, 2014, 10, 5043-5054.	4.1	151
30	Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fibre system. Biomaterials, 2004, 25, 501-507.	5.7	149
31	Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials, 2010, 31, 2806-2815.	5.7	149
32	Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions. Acta Biomaterialia, 2011, 7, 2678-2685.	4.1	145
33	The biaxial flexural strength and fatigue property of Lavaâ,,¢ Y-TZP dental ceramic. Dental Materials, 2007, 23, 1018-1029.	1.6	142
34	Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: Characterization and antibiotic drug release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74B, 686-698.	1.6	141
35	In vitro ageing of brushite calcium phosphate cement. Biomaterials, 2003, 24, 4133-4141.	5.7	139
36	Development of soluble glasses for biomedical use Part I: in vitro solubility measurement. Journal of Materials Science: Materials in Medicine, 2000, 11, 609-614.	1.7	136

#	Article	IF	CITATIONS
37	Structure and properties of strontium-doped phosphate-based glasses. Journal of the Royal Society Interface, 2009, 6, 435-446.	1.5	135
38	Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. Journal of the Royal Society Interface, 2010, 7, 453-465.	1.5	134
39	Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials, 2005, 26, 1497-1505.	5.7	128
40	Preparation and characterization of fluoride-substituted apatites. Journal of Materials Science: Materials in Medicine, 1997, 8, 185-191.	1.7	127
41	Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dental Materials, 2008, 24, 308-318.	1.6	126
42	Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomaterialia, 2005, 1, 553-563.	4.1	125
43	Effect of Cell Density on Osteoblastic Differentiation and Matrix Degradation of Biomimetic Dense Collagen Scaffolds. Biomacromolecules, 2008, 9, 129-135.	2.6	120
44	Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin. Biomaterials, 2004, 25, 2283-2292.	5.7	118
45	Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomaterialia, 2008, 4, 264-272.	4.1	114
46	Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2008, 19, 377-386.	1.7	110
47	Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material. Biomaterials, 1993, 14, 793-796.	5.7	108
48	Microstructural characterization of glass-reinforced hydroxyapatite composites. Biomaterials, 1994, 15, 5-10.	5.7	108
49	Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomaterialia, 2009, 5, 1198-1210.	4.1	108
50	In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses. Biomaterials, 2007, 28, 2967-2977.	5.7	106
51	Development of hydroxyapatite bone scaffold for controlled drug release via poly(?-caprolactone) and hydroxyapatite hybrid coatings. Journal of Biomedical Materials Research Part B, 2004, 70B, 240-249.	3.0	105
52	Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomaterialia, 2013, 9, 5251-5261.	4.1	105
53	A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. Journal of Tissue Engineering, 2017, 8, 204173141770733.	2.3	105
54	Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model. , 2017, 58, 708.		105

#	Article	IF	CITATIONS
55	Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Biomaterials, 2005, 26, 4395-4404.	5.7	104
56	Effect of Silver Content on the Structure and Antibacterial Activity of Silver-Doped Phosphate-Based Glasses. Antimicrobial Agents and Chemotherapy, 2007, 51, 4453-4461.	1.4	103
57	Controlled Microchannelling in Dense Collagen Scaffolds by Soluble Phosphate Glass Fibers. Biomacromolecules, 2007, 8, 543-551.	2.6	103
58	The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis. Biomaterials, 2003, 24, 1797-1807.	5.7	102
59	Speciation and the nature of ZnO thin films from chemical bath deposition. Journal of Materials Chemistry, 1996, 6, 1135.	6.7	101
60	Synthesis and structural characterization of P2O5–CaO–Na2O sol–gel materials. Journal of Non-Crystalline Solids, 2007, 353, 1141-1149.	1.5	101
61	Biocompatible magnetite nanoparticles with varying silicaâ€coating layer for use in biomedicine: Physicochemical and magnetic properties, and cellular compatibility. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1734-1742.	2.1	101
62	Multifunctional Hybrid Nanocarrier: Magnetic CNTs Ensheathed with Mesoporous Silica for Drug Delivery and Imaging System. ACS Applied Materials & Interfaces, 2014, 6, 2201-2208.	4.0	101
63	Therapeutically relevant aspects in bone repair and regeneration. Materials Today, 2015, 18, 573-589.	8.3	101
64	Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer. Biomaterials, 1992, 13, 491-496.	5.7	100
65	Investigation of thermal parameters and crytallisation in a ternary CaO–Na2O–P2O5-based glass system. Biomaterials, 2001, 22, 497-501.	5.7	99
66	Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta Biomaterialia, 2015, 13, 324-334.	4.1	99
67	Thermal decomposition of synthesised carbonate hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2002, 13, 529-533.	1.7	98
68	Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials, 2001, 22, 1393-1400.	5.7	95
69	Antimicrobial effect of silver-doped phosphate-based glasses. Journal of Biomedical Materials Research - Part A, 2006, 79A, 618-626.	2.1	95
70	Poly-3-hydroxyoctanoate P(3HO), a Medium Chain Length Polyhydroxyalkanoate Homopolymer from Pseudomonas mendocina. Biomacromolecules, 2011, 12, 2126-2136.	2.6	93
71	Investigation of the solubility and ion release in the glass system K2O–Na2O–CaO–P2O5. Biomaterials, 2001, 22, 3091-3096.	5.7	92
72	JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell–induced protection of AML. Blood, 2017, 130, 789-802.	0.6	90

5

#	Article	IF	CITATIONS
73	Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. Biomaterials, 2004, 25, 4203-4213.	5.7	89
74	Strategies for osteochondral repair: Focus on scaffolds. Journal of Tissue Engineering, 2014, 5, 204173141454185.	2.3	89
75	Mimicking Hierarchical Complexity of the Osteochondral Interface Using Electrospun Silk–Bioactive Glass Composites. ACS Applied Materials & Interfaces, 2017, 9, 8000-8013.	4.0	89
76	Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomaterialia, 2008, 4, 523-534.	4.1	88
77	The effect of composition on the structure of sodium borophosphate glasses. Journal of Non-Crystalline Solids, 2008, 354, 3671-3677.	1.5	87
78	Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Biomaterials, 2020, 227, 119548.	5.7	86
79	Nanotechnology in dentistry: prevention, diagnosis, and therapy. International Journal of Nanomedicine, 2015, 10, 6371.	3.3	85
80	Hydroxyapatite and titania sol-gel composite coatings on titanium for hard tissue implants; Mechanical andin vitro biological performance. Journal of Biomedical Materials Research Part B, 2005, 72B, 1-8.	3.0	84
81	Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Applied Physics A: Materials Science and Processing, 2014, 114, 685-693.	1.1	84
82	Glass reinforced hydroxyapatite for hard tissue surgery—Part 1: mechanical properties. Biomaterials, 2001, 22, 2811-2815.	5.7	83
83	Utilizing Core–Shell Fibrous Collagen-Alginate Hydrogel Cell Delivery System for Bone Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 103-114.	1.6	83
84	Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomaterialia, 2008, 4, 1307-1314.	4.1	82
85	Multi-functional P(3HB) microsphere/45S5 Bioglass®-based composite scaffolds for bone tissue engineering. Acta Biomaterialia, 2010, 6, 2773-2786.	4.1	82
86	Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science, 2021, 117, 100732.	16.0	81
87	Endothelin-1 and Angiogenesis in Cancer. Current Vascular Pharmacology, 2005, 3, 309-314.	0.8	79
88	Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications. Acta Biomaterialia, 2010, 6, 735-742.	4.1	79
89	Evaluation of Dimethylhydrazine Induced Tumours in Mice as a Model System for Colorectal Cancer. British Journal of Cancer, 1973, 28, 530-543.	2.9	78
90	Flexural strength, fatigue life, and stressâ€induced phase transformation study of Yâ€TZP dental ceramic. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 366-377.	1.6	78

#	Article	IF	CITATIONS
91	Retention of mechanical properties and cytocompatibility of a phosphateâ€based glass fiber/polylactic acid composite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 18-27.	1.6	78
92	Organosilica Nanoparticles with an Intrinsic Secondary Amine: An Efficient and Reusable Adsorbent for Dyes. ACS Applied Materials & Interfaces, 2017, 9, 15566-15576.	4.0	77
93	Development of a glass reinforced hydroxyapatite with enhanced mechanical properties. The effect of glass composition on mechanical properties and its relationship to phase changes. Journal of Biomedical Materials Research Part B, 1993, 27, 1591-1598.	3.0	75
94	A structural study of sol–gel and melt-quenched phosphate-based glasses. Journal of Non-Crystalline Solids, 2007, 353, 1759-1765.	1.5	75
95	A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. Journal of Dentistry, 2011, 39, 266-272.	1.7	75
96	An analysis of income transfers in a developing country. Journal of Development Economics, 1981, 8, 205-226.	2.1	73
97	Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition. Bone, 2008, 43, 377-385.	1.4	73
98	Controlled Delivery of Gentamicin Using Poly(3-hydroxybutyrate) Microspheres. International Journal of Molecular Sciences, 2011, 12, 4294-4314.	1.8	73
99	Reinforcement of hydroxyapatite by adding P2O5-CaO glasses with Na2O, K2O and MgO. Journal of Materials Science: Materials in Medicine, 1996, 7, 187-189.	1.7	72
100	Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam. Journal of Materials Science: Materials in Medicine, 2002, 13, 485-489.	1.7	71
101	Synthesis and characterisation of magnesium substituted calcium phosphate bioceramic nanoparticles made via continuous hydrothermal flow synthesis. Journal of Materials Chemistry, 2008, 18, 5900.	6.7	70
102	Photocatalytic activities of N-doped nano-titanias and titanium nitride. Journal of the European Ceramic Society, 2009, 29, 2343-2353.	2.8	70
103	Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 1081-1091.	1.3	70
104	Titanium phosphate glass microspheres for bone tissue engineering. Acta Biomaterialia, 2012, 8, 4181-4190.	4.1	70
105	Structural characterization and physical properties of P2O5–CaO–Na2O–TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies. Acta Biomaterialia, 2012, 8, 333-340.	4.1	70
106	Sintering effects in a glass reinforced hydroxyapatite. Biomaterials, 1996, 17, 1437-1442.	5.7	69
107	Sol–gel synthesis of the P2O5–CaO–Na2O–SiO2 system as a novel bioresorbable glass. Journal of Materials Chemistry, 2005, 15, 2134.	6.7	69
108	Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications. Reactive and Functional Polymers, 2013, 73, 1340-1348.	2.0	69

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Some Mixed Alkyl Thiocarbamates of Gallium and Indium, Precursors for III/VI Materials: The X-ray Single-Crystal Structures of Dimethyl- and Diethylindium Diethyldithiocarbamate. Chemistry of Materials, 1995, 7, 716-724.	3.2	67
110	Cement from magnesium substituted hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2005, 16, 455-460.	1.7	66
111	Initial responses of human osteoblasts to sol–gel modified titanium with hydroxyapatite and titania composition. Acta Biomaterialia, 2006, 2, 547-556.	4.1	66
112	The effect of metal ions released from different dental implant-abutment couples on osteoblast function and secretion of bone resorbing mediators. Journal of Dentistry, 2017, 66, 91-101.	1.7	66
113	Glass-reinforced hydroxyapatite: A comprehensive study of the effect of glass composition on the crystallography of the composite. , 1998, 39, 244-251.		65
114	The effects of oxalate-containing products on the exposed dentine surface: an SEM investigation. Journal of Oral Rehabilitation, 2001, 28, 1037-1044.	1.3	65
115	High-Throughput Continuous Hydrothermal Synthesis of an Entire Nanoceramic Phase Diagram. ACS Combinatorial Science, 2009, 11, 829-834.	3.3	65
116	Effect of heat treatment on pulsed laser deposited amorphous calcium phosphate coatings. , 1998, 43, 69-76.		64
117	Synthesis and characterization of doped nano-sized ceria–zirconia solid solutions. Applied Catalysis B: Environmental, 2009, 90, 405-415.	10.8	64
118	Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1919-1929.	1.7	64
119	Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. Journal of Tissue Engineering, 2019, 10, 204173141987752.	2.3	64
120	Correlates of Adjustment Among Cancer Survivors. Journal of Psychosocial Oncology, 2002, 20, 37-59.	0.6	63
121	Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 75B, 34-41.	1.6	63
122	Polylactic acid–phosphate glass composite foams as scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 322-331.	1.6	63
123	The biaxial flexural strength of two pressable ceramic systems. Journal of Dentistry, 1999, 27, 183-196.	1.7	62
124	Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallisation. Journal of Materials Science: Materials in Medicine, 2014, 25, 47-53.	1.7	62
125	Dual actions of osteoclastic-inhibition and osteogenic-stimulation through strontium-releasing bioactive nanoscale cement imply biomaterial-enabled osteoporosis therapy. Biomaterials, 2021, 276, 121025.	5.7	62
126	Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro. Ultrasound in Medicine and Biology, 2001, 27, 579-586.	0.7	61

#	Article	IF	CITATIONS
127	The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system. Journal of Materials Science: Materials in Medicine, 2002, 13, 549-556.	1.7	61
128	Zinc-containing phosphate-based glasses for tissue engineering. Biomedical Materials (Bristol), 2007, 2, 11-20.	1.7	61
129	Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites. Dental Materials, 2015, 31, 1279-1289.	1.6	60
130	Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(?-caprolactone) composite membranes. Journal of Biomedical Materials Research Part B, 2004, 70A, 467-479.	3.0	59
131	Biomimetic Approach to Dental Implants. Current Pharmaceutical Design, 2008, 14, 2201-2211.	0.9	59
132	Poly(3â€hydroxybutyrate) production by <i>Bacillus cereus</i> SPV using sugarcane molasses as the main carbon source. Biotechnology Journal, 2012, 7, 293-303.	1.8	59
133	Nerve tissue engineering using blends of poly(3â€hydroxyalkanoates) for peripheral nerve regeneration. Engineering in Life Sciences, 2015, 15, 612-621.	2.0	59
134	Adhesion and microstructural characterization of plasma-sprayed hydroxyapatite/glass ceramic coatings onto Ti-6A1-4V substrates. Surface and Coatings Technology, 1998, 102, 191-196.	2.2	58
135	Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass—polycaprolactone composites. Biomaterials, 2005, 26, 2209-2218.	5.7	58
136	Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. Materials Science and Engineering C, 2016, 60, 285-292.	3.8	58
137	Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions: structure and properties of the composites. Journal of Materials Science: Materials in Medicine, 1995, 6, 348-352.	1.7	56
138	An in vitro study of the compressive load at fracture of Procera AllCeram crowns with varying thickness of veneer porcelain. Journal of Prosthetic Dentistry, 2003, 89, 154-160.	1.1	56
139	Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: Bonding to titanium and scanning electron microscopy. Dental Materials, 2013, 29, 521-529.	1.6	56
140	Assessment of Polymer/Bioactive Glass-Composite Microporous Spheres for Tissue Regeneration Applications. Tissue Engineering - Part A, 2009, 15, 1451-1461.	1.6	55
141	Sol–Gel Synthesis and Electrospraying of Biodegradable (P ₂ O ₅) ₅₅ –(CaO) ₃₀ –(Na ₂ O) _{15Glass Nanospheres as a Transient Contrast Agent for Ultrasound Stem Cell Imaging. ACS Nano, 2015, 9, 1868-1877.}	7.3	55
142	Performance of novel high throughput multi electrospray systems for forming of polymeric micro/nanoparticles. Materials and Design, 2017, 126, 73-84.	3.3	54
143	Flexural strength optimisation of a leucite reinforced glass ceramic. Dental Materials, 2001, 17, 21-33.	1.6	53
144	Effect of increasing silver content in phosphate-based glasses on biofilms ofStreptococcus sanguis. Journal of Biomedical Materials Research Part B, 2003, 67A, 401-412.	3.0	53

#	Article	IF	CITATIONS
145	Sol–gel synthesis and structural characterisation of P ₂ O ₅ –B ₂ O ₃ –Na ₂ O glasses for biomedical applications. Journal of Materials Chemistry, 2009, 19, 150-158.	6.7	53
146	Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. Bioactive Materials, 2021, 6, 123-136.	8.6	53
147	New sol–gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterisation. Journal of Materials Chemistry, 2007, 17, 4777.	6.7	52
148	The structure and properties of silver-doped phosphate-based glasses. Journal of Materials Science, 2007, 42, 9827-9835.	1.7	52
149	Effect of surface treatment on the bioactivity of nickel–titanium. Acta Biomaterialia, 2008, 4, 1969-1984.	4.1	52
150	High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomaterialia, 2011, 7, 791-799.	4.1	52
151	Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. Journal of Biomedical Materials Research - Part A, 2005, 74A, 294-305.	2.1	51
152	Quantification of Anion and Cation Release from a Range of Ternary Phosphate-based Glasses with Fixed 45 mol% P2O5. Journal of Biomaterials Applications, 2005, 20, 65-80.	1.2	51
153	A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass® using surface sensitive shallow angle X-ray diffraction. Journal of Materials Science: Materials in Medicine, 2009, 20, 883-888.	1.7	51
154	Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. Journal of Tissue Engineering, 2020, 11, 204173141990042.	2.3	51
155	Hydroxyapatite and fluor-hydroxyapatite layered film on titanium processed by a sol-gel route for hard-tissue implants. Journal of Biomedical Materials Research Part B, 2004, 71B, 66-76.	3.0	50
156	Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications. Journal of Materials Science: Materials in Medicine, 2008, 19, 1669-1679.	1.7	50
157	Doping of a high calcium oxide metaphosphate glass with titanium dioxide. Journal of Non-Crystalline Solids, 2009, 355, 991-1000.	1.5	50
158	Biospectroscopy of Nanodiamond-Induced Alterations in Conformation of Intra- and Extracellular Proteins: A Nanoscale IR Study. Analytical Chemistry, 2016, 88, 7530-7538.	3.2	50
159	Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e495-e512.	1.3	50
160	Structural changes of thermally sprayed hydroxyapatite investigated by Rietveld analysis. Biomaterials, 1996, 17, 639-645.	5.7	49
161	Ion release characteristics, precipitate formation and sealing ability of a phosphate glass–polycaprolactone-based composite for use as a root canal obturation material. Dental Materials, 2009, 25, 400-410.	1.6	48
162	Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 557885.	2.0	48

#	Article	IF	CITATIONS
163	High strength re-mineralizing, antibacterial dental composites with reactive calcium phosphates. Dental Materials, 2013, 29, 473-484.	1.6	47
164	Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method. Optimisation, characterisation and rheology. Dental Materials, 2013, 29, 166-173.	1.6	47
165	Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomaterialia, 2018, 71, 225-234.	4.1	47
166	Molecularly Imprinted Polymers and Electrospinning: Manufacturing Convergence for Next‣evel Applications. Advanced Functional Materials, 2020, 30, 2001955.	7.8	47
167	3D culture technologies of cancer stem cells: promising ex vivo tumor models. Journal of Tissue Engineering, 2020, 11, 204173142093340.	2.3	47
168	Investigation of the dry and wet fatigue properties of three all-ceramic crown systems. International Journal of Prosthodontics, 1998, 11, 255-62.	0.7	47
169	Analysis ofin vitro reaction layers formed on Bioglass� using thin-film X-ray diffraction and ATR-FTIR microspectroscopy. , 1998, 41, 162-166.		46
170	Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. Journal of Biomedical Materials Research Part B, 2004, 68A, 522-530.	3.0	46
171	Preparation, structural characterisation and antibacterial properties of Ga-doped sol–gel phosphate-based glass. Journal of Materials Science, 2009, 44, 1858-1867.	1.7	46
172	A novel method of forming micro- and macroporous monetite cements. Journal of Materials Chemistry B, 2013, 1, 958-969.	2.9	46
173	Unidirectional neuronal cell growth and differentiation on aligned polyhydroxyalkanoate blend microfibres with varying diameters. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1581-1594.	1.3	46
174	The effect of veneering and heat treatment on the flexural strength of Empress® 2 ceramics. Journal of Dentistry, 2002, 30, 161-169.	1.7	45
175	Optical and photocatalytic behaviours of nanoparticles in the Ti–Zn–O binary system. RSC Advances, 2014, 4, 31799.	1.7	45
176	Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 236-246.	1.3	45
177	Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties. Journal of Biomaterials Applications, 2015, 30, 327-337.	1.2	45
178	Correlation between light intensity and exposure time on the hardness of composite resin. Journal of Materials Science: Materials in Medicine, 2000, 11, 361-364.	1.7	44
179	The nucleation and crystallization of fine grained leucite glass-ceramics for dental applications. Dental Materials, 2006, 22, 925-933.	1.6	44
180	Three-dimensional Printing in Maxillofacial Surgery: Hype versus Reality. Journal of Tissue Engineering, 2018, 9, 204173141877090.	2.3	44

#	Article	IF	CITATIONS
181	Silk fibroin–polyurethane blends: Physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 2013, 9, 8962-8971.	4.1	43
182	Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. Journal of Materials Science: Materials in Medicine, 2018, 29, 179.	1.7	43
183	Glass reinforced hydroxyapatite for hard tissue surgery—Part II: in vitro evaluation of bone cell growth and function. Biomaterials, 2001, 22, 2817-2824.	5.7	42
184	Effects of phosphate glass fiber–collagen scaffolds on functional recovery of completely transected rat spinal cords. Acta Biomaterialia, 2012, 8, 1802-1812.	4.1	42
185	Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties. Journal of Biomaterials Applications, 2014, 29, 454-464.	1.2	42
186	Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders. Biomaterials, 2000, 21, 1387-1392.	5.7	41
187	Soluble phosphate glass fibres for repair of bone-ligament interface. Journal of Materials Science: Materials in Medicine, 2005, 16, 1131-1136.	1.7	41
188	Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility. Journal of Materials Science: Materials in Medicine, 2013, 24, 281-294.	1.7	41
189	Dual-ion delivery for synergistic angiogenesis and bactericidal capacity with silica-based microsphere. Acta Biomaterialia, 2019, 83, 322-333.	4.1	41
190	Flow cytometry for assessing biocompatibility. Journal of Biomedical Materials Research Part B, 1998, 41, 649-656.	3.0	40
191	Effect of ternary phosphate-based glass compositions on osteoblast and osteoblast-like proliferation, differentiation and death in vitro. Acta Biomaterialia, 2007, 3, 563-572.	4.1	40
192	Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility. Journal of Materials Science: Materials in Medicine, 2009, 20, 1339-1346.	1.7	40
193	Microporous collagen spheres produced via thermally induced phase separation for tissue regeneration. Acta Biomaterialia, 2010, 6, 1158-1166.	4.1	40
194	Production of a novel medium chain length poly(3â€hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microbial Biotechnology, 2017, 10, 1384-1399.	2.0	40
195	Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomaterials Science, 2019, 7, 5221-5231.	2.6	40
196	A high-energy X-ray diffraction, 31P and 11B solid-state NMR study of the structure of aged sodium borophosphate glasses. Materials Chemistry and Physics, 2008, 111, 455-462.	2.0	39
197	Carbon Nanotubes in Nanocomposites and Hybrids with Hydroxyapatite for Bone Replacements. Journal of Tissue Engineering, 2011, 2011, 674287.	2.3	39
198	Tailoring solubility and drug release from electrophoretic deposited chitosan–gelatin films on titanium. Surface and Coatings Technology, 2014, 242, 232-236.	2.2	39

#	Article	IF	CITATIONS
199	Electrohydrodynamic fabrication of core–shell PLGA nanoparticles with controlled release of cisplatin for enhanced cancer treatment. International Journal of Nanomedicine, 2017, Volume 12, 3913-3926.	3.3	39
200	Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications. Dental Materials, 2020, 36, 945-958.	1.6	39
201	Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3â€hydroxybutyrate) and microâ€fibrillated bacterial cellulose. Polymer International, 2016, 65, 780-791.	1.6	38
202	The effect of sodium hypochlorite and ethylenediaminetetraacetic acid irrigation, individually and in alternation, on tooth surface strain. International Endodontic Journal, 2010, 43, 31-40.	2.3	37
203	Low hepatitis E virus RNA prevalence in a largeâ€scale survey of United States source plasma donors. Transfusion, 2017, 57, 2958-2964.	0.8	37
204	Sol–Gel Preparation and Properties of Fluoride‣ubstituted Hydroxyapatite Powders. Journal of the American Ceramic Society, 2004, 87, 1939-1944.	1.9	36
205	Novel phosphate glasses with different amounts of TiO2 for biomedical applications. Materials Science and Engineering C, 2011, 31, 434-442.	3.8	36
206	Titanium-containing bioactive phosphate glasses. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1352-1375.	1.6	36
207	Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. Biomaterials, 2015, 56, 46-57.	5.7	36
208	Population and Reproductive Health: An Economic Framework for Policy Evaluation. Population and Development Review, 1998, 24, 697.	1.2	35
209	Hard-tissue-engineered zirconia porous scaffolds with hydroxyapatite sol-gel and slurry coatings. Journal of Biomedical Materials Research Part B, 2004, 70B, 270-277.	3.0	35
210	Calcium Phosphonate Frameworks for Treating Bone Tissue Disorders. Inorganic Chemistry, 2015, 54, 9929-9935.	1.9	35
211	Development of a novel smart scaffold for human skeletal muscle regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 162-171.	1.3	35
212	Electrostatic self-assembled graphene oxide-collagen scaffolds towards a three-dimensional microenvironment for biomimetic applications. RSC Advances, 2016, 6, 49039-49051.	1.7	35
213	Pro-angiogenic and osteogenic composite scaffolds of fibrin, alginate and calcium phosphate for bone tissue engineering. Journal of Tissue Engineering, 2021, 12, 204173142110056.	2.3	35
214	Direct and indirect effects of P2O5 glass reinforced-hydroxyapatite composites on the growth and function of osteoblast-like cells. Biomaterials, 2000, 21, 1165-1172.	5.7	34
215	Effect of Silver-Doped Phosphate-Based Glasses on Bacterial Biofilm Growth. Applied and Environmental Microbiology, 2008, 74, 5228-5230.	1.4	34
216	Differential Effect of Amelogenin Peptides on Osteogenic Differentiation In Vitro: Identification of Possible New Drugs for Bone Repair and Regeneration. Tissue Engineering - Part A, 2012, 18, 1193-1202.	1.6	34

#	Article	IF	CITATIONS
217	Synthesis and biocompatibility properties of polyester containing various diacid based on isosorbide. Journal of Biomaterials Applications, 2012, 27, 99-109.	1.2	34
218	Novel poly(3â€hydroxybutyrate) composite films containing bioactive glass nanoparticles for wound healing applications. Polymer International, 2016, 65, 661-674.	1.6	34
219	Targeting with nanoparticles for the therapeutic treatment of brain diseases. Journal of Tissue Engineering, 2020, 11, 204173141989746.	2.3	34
220	Na,27Al and31P NMR and X-ray powder diffraction study of Na/Ca/Al phosphate glasses and ceramics. Journal of Materials Chemistry, 1997, 7, 1573-1580.	6.7	33
221	Investigation of silica-iron-phosphate glasses for tissue engineering. Journal of Materials Science: Materials in Medicine, 2006, 17, 937-944.	1.7	33
222	Collagen release kinetics of surface functionalized 45S5 Bioglass®â€based porous scaffolds. Journal of Biomedical Materials Research - Part A, 2008, 86A, 987-995.	2.1	33
223	Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 2218-2229.	2.3	33
224	In vitro degradation of a PHB/PHV copolymer and a new technique fop monitoring early surface changes. Biomaterials, 1991, 12, 210-214.	5.7	32
225	The Impact of Population Policies: Comment. Population and Development Review, 1994, 20, 611.	1.2	32
226	Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: Chemical, mechanical and biological considerations. Acta Biomaterialia, 2010, 6, 845-855.	4.1	32
227	Piezoelectric characteristics of a polyhydroxybutyrate-based composite. Clinical Materials, 1991, 8, 155-158.	0.5	31
228	The crystallization of an aluminosilicate glass in the KO–AlO–SiO system. Dental Materials, 2005, 21, 811-822.	1.6	31
229	Sol–Gel Phosphate-based Glass for Drug Delivery Applications. Journal of Biomaterials Applications, 2012, 26, 613-622.	1.2	31
230	Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly (Ϊμ-caprolactone) diol. Journal of Bioactive and Compatible Polymers, 2013, 28, 274-288.	0.8	31
231	Effects of magnesium content on the physical, chemical and degradation properties in a MgOâ^'CaOâ^'Na2Oâ^'P2O5 glass system. Journal of Non-Crystalline Solids, 2013, 363, 57-63.	1.5	31
232	Antibacterial Copper-Doped Calcium Phosphate Glasses for Bone Tissue Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 6054-6062.	2.6	31
233	Influence of loading types on the shear strength of the dentin-resin interface bonding. Journal of Materials Science: Materials in Medicine, 2001, 12, 39-44.	1.7	30
234	The development and testing of glaze materials for application to the fit surface of dental ceramic restorations. Dental Materials, 2009, 25, 431-441.	1.6	30

#	Article	IF	CITATIONS
235	<i>In vitro</i> antibacterial efficacy of tetracycline hydrochloride adsorbed onto Bioâ€Oss® bone graft. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 394-400.	1.6	30
236	Titanium and Strontium-doped Phosphate Glasses as Vehicles for Strontium Ion Delivery to Cells. Journal of Biomaterials Applications, 2011, 25, 877-893.	1.2	30
237	Synthesis of elastic biodegradable polyesters of ethylene glycol and butylene glycol from sebacic acid. Acta Biomaterialia, 2012, 8, 2911-2918.	4.1	30
238	Enabling Consistency in Pluripotent Stem Cell-Derived Products for Research and Development and Clinical Applications Through Material Standards. Stem Cells Translational Medicine, 2015, 4, 217-223.	1.6	30
239	Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering. Journal of Biomaterials Applications, 2015, 30, 300-310.	1.2	30
240	Selenium Nanoparticles as Candidates for Antibacterial Substitutes and Supplements against Multidrug-Resistant Bacteria. Biomolecules, 2021, 11, 1028.	1.8	30
241	In vitro and in vivo investigation of a range of phosphate glass-reinforced polyhydroxybutyrate-based degradable composites. Journal of Materials Science: Materials in Medicine, 1993, 4, 102-106.	1.7	29
242	Structural analysis of calcium phosphate coatings produced by pulsed laser deposition at different water-vapour pressures. Journal of Materials Science: Materials in Medicine, 1997, 8, 873-876.	1.7	29
243	Flow cytometry analysis of the effects of pre-immersion on the biocompatibility of glass-reinforced hydroxyapatite plasma-sprayed coatings. Biomaterials, 2000, 21, 813-820.	5.7	29
244	Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite. Journal of Biomedical Materials Research - Part A, 2005, 72A, 258-268.	2.1	29
245	A Facile Synthesis Route to Prepare Microtubes from Phosphate Glass Fibres. Advanced Materials, 2007, 19, 2856-2862.	11.1	29
246	Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment. Journal of the Royal Society Interface, 2009, 6, 401-409.	1.5	29
247	Effects of enamel matrix proteins on multi-lineage differentiation of periodontal ligament cells in vitro. Acta Biomaterialia, 2013, 9, 4796-4805.	4.1	29
248	Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration. Journal of Biomaterials Applications, 2014, 28, 1079-1084.	1.2	29
249	Therapeutic foam scaffolds incorporating biopolymer-shelled mesoporous nanospheres with growth factors. Acta Biomaterialia, 2014, 10, 2612-2621.	4.1	29
250	Investigations into <i>inÂsitu Enterococcus faecalis</i> biofilm removal by passive and active sodium hypochlorite irrigation delivered into the lateral canal of a simulated root canal model. International Endodontic Journal, 2018, 51, 649-662.	2.3	29
251	Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration. ACS Applied Bio Materials, 2019, 2, 5190-5203.	2.3	29
252	Water-soluble polyacetals derived from diphenols. Journal of Materials Chemistry, 2005, 15, 1849.	6.7	28

#	Article	IF	CITATIONS
253	Effect of Water Storage and Surface Treatments on the Tensile Bond Strength of IPS Empress 2 Ceramic. Journal of Prosthodontics, 2007, 16, 192-199.	1.7	28
254	Physical properties and MAS-NMR studies of titanium phosphate-based glasses. Materials Chemistry and Physics, 2010, 120, 68-74.	2.0	28
255	Characterization of apatite layer formation on P2O5-CaO, P2O5-CaO-Na2O, and P2O5-CaO-Na2O-Al2O3 glass hydroxyapatite composites. , 1996, 31, 481-486.		27
256	Improvement of Hydroxyapatite Sol–Gel Coating on Titanium with Ammonium Hydroxide Addition. Journal of the American Ceramic Society, 2005, 88, 154-159.	1.9	27
257	Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. Journal of Materials Science: Materials in Medicine, 2008, 19, 1553-1557.	1.7	27
258	Characterisation of phosphate coacervates for potential biomedical applications. Journal of Biomaterials Applications, 2014, 28, 1226-1234.	1.2	27
259	Development of a Natural Degradable Polymer for Orthopaedic Use. Journal of Medical Engineering and Technology, 1993, 17, 129-137.	0.8	26
260	Tin(II) Oxyhydroxide by X-ray Powder Diffraction. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 286-288.	0.4	26
261	A novel experimental approach to investigate the effect of different agitation methods using sodium hypochlorite as an irrigant on the rate of bacterial biofilm removal from the wall of a simulated root canal model. Dental Materials, 2016, 32, 1289-1300.	1.6	26
262	Confocal laser scanning, scanning electron, and transmission electron microscopy investigation of <i>Enterococcus faecalis</i> biofilm degradation using passive and active sodium hypochlorite irrigation within a simulated root canal model. MicrobiologyOpen, 2017, 6, e00455.	1.2	26
263	Physical Properties and Biofunctionalities of Bioactive Root Canal Sealers In Vitro. Nanomaterials, 2020, 10, 1750.	1.9	26
264	Biological Potential of Polyethylene Glycol (PEG)-Functionalized Graphene Quantum Dots in In Vitro Neural Stem/Progenitor Cells. Nanomaterials, 2021, 11, 1446.	1.9	26
265	Flow cytometry analysis of effects of glass on response of osteosarcoma cells to plasma-sprayed hydroxyapatite/CaO-P2O5 coatings. Journal of Biomedical Materials Research Part B, 1999, 47, 603-611.	3.0	25
266	Structural insights of glass-reinforced hydroxyapatite composites by Rietveld refinement. Biomaterials, 2000, 21, 1905-1910.	5.7	25
267	Interlaboratory validation of oxidation-index measurement methods for UHMWPE after long-term shelf aging. Journal of Biomedical Materials Research Part B, 2002, 63, 15-23.	3.0	25
268	Comparison of mesenchymal stem cell proliferation and differentiation between biomimetic and electrochemical coatings on different topographic surfaces. Journal of Materials Science: Materials in Medicine, 2013, 24, 199-210.	1.7	25
269	Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues. Materials Science and Engineering C, 2013, 33, 2104-2112.	3.8	25
270	Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomedical Materials (Bristol), 2018, 13, 015008.	1.7	25

#	Article	IF	CITATIONS
271	SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties. Acta Biomaterialia, 2019, 99, 181-195.	4.1	25
272	Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties. Acta Biomaterialia, 2009, 5, 2072-2083.	4.1	24
273	Novel Biodegradable and Biocompatible Poly(3â€hydroxyoctanoate)/Bacterial Cellulose Composites. Advanced Engineering Materials, 2012, 14, B330.	1.6	24
274	Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates. Journal of Biomaterials Applications, 2013, 28, 448-461.	1.2	24
275	The structure of phosphate glass biomaterials from neutron diffraction and31P nuclear magnetic resonance data. Journal of Physics Condensed Matter, 2007, 19, 415116.	0.7	23
276	Assessment of antimicrobial microspheres as a prospective novel treatment targeted towards the repair of perianal fistulae. Alimentary Pharmacology and Therapeutics, 2008, 28, 614-622.	1.9	23
277	Structural characterization by x-ray methods of novel antimicrobial gallium-doped phosphate-based glasses. Journal of Chemical Physics, 2009, 130, 064708.	1.2	23
278	The effect of zinc and titanium on the structure of calcium–sodium phosphate based glass. Journal of Non-Crystalline Solids, 2010, 356, 1319-1324.	1.5	23
279	Tailoring degree of esterification and branching of poly(glycerol sebacate) by energy efficient microwave irradiation. Polymer Chemistry, 2017, 8, 3937-3947.	1.9	23
280	Reformulated mineral trioxide aggregate components and the assessments for use as future dental regenerative cements. Journal of Tissue Engineering, 2018, 9, 204173141880739.	2.3	23
281	Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering. Journal of Tissue Engineering, 2019, 10, 204173141982643.	2.3	23
282	A functional speech impression used to fabricate a maxillary speech prosthesis for a partial glossectomy patient. Journal of Prosthetic Dentistry, 1984, 51, 232-237.	1.1	22
283	In vitro degradation of a polyhydroxybutyrate/polyhydroxyvalerate copolymer. Journal of Materials Science: Materials in Medicine, 1992, 3, 352-358.	1.7	22
284	The effect of irrigation time, root morphology and dentine thickness on tooth surface strain when using 5% sodium hypochlorite and 17% EDTA. International Endodontic Journal, 2010, 43, 190-199.	2.3	22
285	Effect of cavity design on tooth surface strain. Journal of Prosthetic Dentistry, 2013, 110, 369-375.	1.1	22
286	Novel sol–gel preparation of (P2O5)0.4–(CaO)0.25–(Na2O)X–(TiO2)(0.35â^'X) bioresorbable glasses (XÂ=Â0.05, 0.1, and 0.15). Journal of Sol-Gel Science and Technology, 2015, 73, 434-442.	1.1	22
287	Phase-Tunable Calcium Phosphate Biomaterials Synthesis and Application in Protein Delivery. ACS Biomaterials Science and Engineering, 2015, 1, 947-954.	2.6	22
288	Facile preparation of antibacterial, highly elastic silvered polyurethane nanofiber fabrics using silver carbamate and their dermal wound healing properties. Journal of Biomaterials Applications, 2017, 31, 1026-1038.	1.2	22

#	Article	IF	CITATIONS
289	Highly elastomeric poly(3-hydroxyoctanoate) based natural polymer composite for enhanced keratinocyte regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 326-335.	1.8	22
290	Influence of casting methods on marginal and internal discrepancies of complete cast crowns. Brazilian Dental Journal, 2004, 15, 127-132.	0.5	21
291	Formation of functional phosphosilicate gels from phytic acid and tetraethyl orthosilicate. Journal of Sol-Gel Science and Technology, 2008, 48, 378-383.	1.1	21
292	Ti K-edge XANES study of the local environment of titanium in bioresorbable TiO2–CaO–Na2O–P2O5 glasses. Journal of Materials Science: Materials in Medicine, 2008, 19, 1681-1685.	1.7	21
293	Nanomechanical evaluation of nickel–titanium surface properties after alkali and electrochemical treatments. Journal of the Royal Society Interface, 2008, 5, 1009-1022.	1.5	21
294	Mesoporous silica tubular nanocarriers for the delivery of therapeutic molecules. RSC Advances, 2013, 3, 8692.	1.7	21
295	Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression. Journal of Tissue Engineering, 2015, 6, 204173141561774.	2.3	21
296	Microheterogeneity of α1-acid glycoprotein: Lack of discrimination between benign and malignant inflammatory disease of the lung. Clinica Chimica Acta, 1985, 150, 231-235.	0.5	20
297	Sol–gel synthesis and structural characterisation of binary TiO2–P2O5 glasses. Materials Research Bulletin, 2008, 43, 333-342.	2.7	20
298	Study of the adhesion of Staphylococcus aureus to coated glass substrates. Journal of Materials Science, 2011, 46, 6355-6363.	1.7	20
299	The homopolymer poly(3â€hydroxyoctanoate) as a matrix material for soft tissue engineering. Journal of Applied Polymer Science, 2011, 122, 3606-3617.	1.3	20
300	Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. Materials Science and Engineering C, 2014, 35, 307-313.	3.8	20
301	Three dimensional porous scaffolds derived from collagen, elastin and fibrin proteins orchestrate adipose tissue regeneration. Journal of Tissue Engineering, 2021, 12, 204173142110192.	2.3	20
302	Kaufman syndrome (hydrometrocolpos, polydactyly, and congenital heart disease) with pituitary dysplasia, choanal atresia, and vertebral anomalies. American Journal of Medical Genetics Part A, 1981, 8, 389-393.	2.4	19
303	Phosphorus speciation in sodium–calcium–phosphate ceramics. Journal of the Chemical Society Dalton Transactions, 1997, , 1483-1484.	1.1	19
304	The Effect of Sodium Hypochlorite Irrigant Concentration on Tooth Surface Strain. Journal of Endodontics, 2002, 28, 575-579.	1.4	19
305	Dynamic shrinkage behavior of hydroxyapatite and glass-reinforced hydroxyapatites. Journal of Materials Science, 2004, 39, 2205-2208.	1.7	19
306	Structural Characteristics of Antibacterial Bioresorbable Phosphate Glass. Advanced Functional Materials, 2008, 18, 634-639.	7.8	19

#	Article	IF	CITATIONS
307	Control of surface free energy in titanium doped phosphate based glasses by coâ€doping with zinc. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 392-407.	1.6	19
308	TiO ₂ -doped phosphate glass microcarriers: A stable bioactive substrate for expansion of adherent mammalian cells. Journal of Biomaterials Applications, 2013, 28, 3-11.	1.2	19
309	Dissolution and drug release profiles of phosphate glasses doped with high valency oxides. Journal of Materials Science: Materials in Medicine, 2016, 27, 108.	1.7	19
310	Auditory disorders and future therapies with delivery systems. Journal of Tissue Engineering, 2018, 9, 204173141880845.	2.3	19
311	Emerging biogenesis technologies of extracellular vesicles for tissue regenerative therapeutics. Journal of Tissue Engineering, 2021, 12, 204173142110190.	2.3	19
312	Effects of therapeutic ultrasound on osteoblast gene expression. Journal of Materials Science: Materials in Medicine, 2001, 12, 1001-1004.	1.7	18
313	X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glasses. Journal of Non-Crystalline Solids, 2006, 352, 3080-3087.	1.5	18
314	Ironâ€phosphate glass fiber scaffolds for the hard–soft interface regeneration: The effect of fiber diameter and flow culture condition on cell survival and differentiation. Journal of Biomedical Materials Research - Part A, 2008, 87A, 1017-1026.	2.1	18
315	A tyrosine-rich amelogenin peptide promotes neovasculogenesis in vitro and ex vivo. Acta Biomaterialia, 2014, 10, 1930-1939.	4.1	18
316	The Effect of Selenium Nanoparticles on the Osteogenic Differentiation of MC3T3-E1 Cells. Nanomaterials, 2021, 11, 557.	1.9	18
317	Therapeutic tissue regenerative nanohybrids self-assembled from bioactive inorganic core / chitosan shell nanounits. Biomaterials, 2021, 274, 120857.	5.7	18
318	Recent advances in drug delivery systems for glaucoma treatment. Materials Today Nano, 2022, 18, 100178.	2.3	18
319	An Empirical Analysis of Mortality Differentials in Kenya at the Macro and Micro Levels. Economic Development and Cultural Change, 1980, 29, 165-185.	0.9	17
320	Preparation and characterisation of porous silica and silica/titania monoliths for potential use in bone replacement. Microporous and Mesoporous Materials, 2012, 156, 51-61.	2.2	17
321	The effect of sodium hypochlorite concentration and irrigation needle extension on biofilm removal from a simulated root canal model. Australian Endodontic Journal, 2017, 43, 102-109.	0.6	17
322	Reduction of Tribocorrosion Products When Using the Platform-Switching Concept. Journal of Dental Research, 2018, 97, 995-1002.	2.5	17
323	Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dental Materials, 2020, 36, 157-166.	1.6	17
324	The protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery. Nanoscale Advances, 2020, 2, 4798-4812.	2.2	17

#	Article	IF	CITATIONS
325	Mesoporous Phosphate-Based Glasses Prepared via Sol–Gel. ACS Biomaterials Science and Engineering, 2020, 6, 1428-1437.	2.6	17
326	Pulp innervation after radiation therapy. Journal of Prosthetic Dentistry, 1986, 56, 708-711.	1.1	16
327	Fracture strength of all-ceramic crowns. Journal of Materials Science: Materials in Medicine, 1998, 9, 555-559.	1.7	16
328	Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. Journal of the Royal Society Interface, 2014, 11, 20140727.	1.5	16
329	Sequential identification of a degradable phosphate glass scaffold for skeletal muscle regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 801-810.	1.3	16
330	The effect of platform switching on the levels of metal ion release from different implant–abutment couples. International Journal of Oral Science, 2016, 8, 117-125.	3.6	16
331	Degradation of zinc containing phosphate-based glass as a material for orthopedic tissue engineering. Journal of Materials Science: Materials in Medicine, 2016, 27, 157.	1.7	16
332	Characterisation of osteogenic and vascular responses of hMSCs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. Journal of Tissue Engineering, 2020, 11, 204173142095471.	2.3	16
333	Mesoporous Strontium-Doped Phosphate-Based Sol-Gel Glasses for Biomedical Applications. Frontiers in Chemistry, 2020, 8, 249.	1.8	16
334	Digital image correlation in dental materials and related research: A review. Dental Materials, 2021, 37, 758-771.	1.6	16
335	Quantification of crystalline phases and measurement of phosphate chain lengths in a mixed phase sample by 31P refocused INADEQUATE MAS NMR. Chemical Physics Letters, 2008, 455, 178-183.	1.2	15
336	<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cells. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1596-1608.	2.1	15
337	Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives. Acta Biomaterialia, 2010, 6, 2695-2703.	4.1	15
338	Structural characterization of titanium-doped Bioglass using isotopic substitution neutron diffraction. Physical Chemistry Chemical Physics, 2012, 14, 15807.	1.3	15
339	Sol–gel synthesis of quaternary (P ₂ O ₅) ₅₅ –(CaO)		

#	Article	IF	CITATIONS
343	Effects of sintering conditions on hydroxyapatite for use in medical applications: a powder diffraction study. Journal of Materials Chemistry, 1994, 4, 185.	6.7	14
344	An investigation into the crystallization of Dicor glass–ceramic. Journal of Materials Science Letters, 1999, 18, 1001-1002.	0.5	14
345	Chemical, Corrosion and Topographical Analysis of Stainless Steel Implants after Different Implantation Periods. Journal of Biomaterials Applications, 2008, 23, 51-71.	1.2	14
346	Nanofibrous Glass Tailored with Apatite-Fibronectin Interface for Bone Cell Stimulation. Journal of Nanoscience and Nanotechnology, 2008, 8, 3013-3019.	0.9	14
347	<i>In Vitro</i> Biocompatibility and Mechanical Performance of Titanium Doped High Calcium Oxide Metaphosphate-Based Glasses. Journal of Tissue Engineering, 2010, 1, 390127.	2.3	14
348	Biocompatible, Smooth, Plasma-Treated Nickel–Titanium Surface – An Adequate Platform for Cell Growth. Journal of Biomaterials Applications, 2012, 26, 707-731.	1.2	14
349	A parameterised mathematical model to elucidate osteoblast cell growth in a phosphate-glass microcarrier culture. Journal of Tissue Engineering, 2019, 10, 204173141983026.	2.3	14
350	Advanced biocomposites of poly(glycerol sebacate) and β-tricalcium phosphate by in situ microwave synthesis for bioapplication. Materials Today Advances, 2020, 5, 100023.	2.5	14
351	Enhanced efficacy in drug-resistant cancer cells through synergistic nanoparticle mediated delivery of cisplatin and decitabine. Nanoscale Advances, 2020, 2, 1177-1186.	2.2	14
352	Grapefruit Seed Extract as a Natural Derived Antibacterial Substance against Multidrug-Resistant Bacteria. Antibiotics, 2021, 10, 85.	1.5	14
353	Observations on the fine structure of human ureteric tumours. European Journal of Cancer, 1970, 6, 145-149.	1.0	13
354	Retroviral transduction of alveolar bone cells with a temperature-sensitive SV40 large T antigen. Cell and Tissue Research, 2001, 304, 371-376.	1.5	13
355	A biomedical library of serinol-derived polyesters. Journal of Controlled Release, 2005, 101, 21-34.	4.8	13
356	Brushite Cements from Polyphosphoric Acid, Calcium Phosphate Systems. Journal of the American Ceramic Society, 2007, 90, 1892-1898.	1.9	13
357	Sol–gel preparation and high-energy XRD study of (CaO)x(TiO2)0.5â^'x(P2O5)0.5 glasses (xÂ=Â0 and 0.25). Journal of Materials Science: Materials in Medicine, 2008, 19, 1661-1668.	1.7	13
358	Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Filler. Advanced Engineering Materials, 2010, 12, B298.	1.6	13
359	A procedure for identifying stem cell compartments with multi-lineage differentiation potential. Analyst, The, 2011, 136, 1440.	1.7	13
360	Effects of TiO ₂ â€containing phosphate glasses on solubility and <i>in vitro</i> biocompatibility. Journal of Biomedical Materials Research - Part A, 2011, 99A, 295-306.	2.1	13

#	Article	IF	CITATIONS
361	Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 141-153.	0.7	13
362	Interaction of enamel matrix proteins with human periodontal ligament cells. Clinical Oral Investigations, 2016, 20, 339-347.	1.4	13
363	Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dental Materials, 2022, 38, 363-375.	1.6	13
364	Accumulation of calcium in the intramitochondrial dense bodies in mice. Experimental Cell Research, 1972, 73, 230-233.	1.2	12
365	Effects of phosphate-based glasses on T lymphocytes in vitro. Journal of Materials Science: Materials in Medicine, 2002, 13, 1189-1192.	1.7	12
366	Degradation properties and ion release characteristics of Resilon [®] and phosphate glass/polycaprolactone composites. International Endodontic Journal, 2008, 41, 1093-1100.	2.3	12
367	Sol–gel produced sodium calcium phosphosilicates for bioactive applications: Synthesis and structural characterisation. Materials Chemistry and Physics, 2011, 130, 690-696.	2.0	12
368	Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers. Journal of Biomaterials Applications, 2016, 30, 1350-1361.	1.2	12
369	Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647007.	2.0	12
370	A comparative study of the structure of sodium borophosphates made by sol–gel and melt-quench methods. Journal of Non-Crystalline Solids, 2010, 356, 490-494.	1.5	11
371	Development of Conical Soluble Phosphate Glass Fibers for Directional Tissue Growth. Journal of Biomaterials Applications, 2012, 26, 733-744.	1.2	11
372	Phase stability and rapid consolidation of hydroxyapatite–zirconia nano-coprecipitates made using continuous hydrothermal flow synthesis. Journal of Biomaterials Applications, 2012, 27, 79-90.	1.2	11
373	Gelatin-apatite bone mimetic co-precipitates incorporated within biopolymer matrix to improve mechanical and biological properties useful for hard tissue repair. Journal of Biomaterials Applications, 2014, 28, 1213-1225.	1.2	11
374	P(3HB) Based Magnetic Nanocomposites: Smart Materials for Bone Tissue Engineering. Journal of Nanomaterials, 2016, 2016, 1-14.	1.5	11
375	Investigation to test potential stereolithography materials for development of anin vitroroot canal model. Microscopy Research and Technique, 2017, 80, 202-210.	1.2	11
376	Towards modular bone tissue engineering using Ti–Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies. Journal of Biomaterials Applications, 2017, 32, 295-310.	1.2	11
377	Utilization of <scp>GelMA</scp> with phosphate glass fibers for glial cell alignment. Journal of Biomedical Materials Research - Part A, 2021, 109, 2212-2224.	2.1	11
378	A reversible fluorescent probe for monitoring Ag(I) ions. Journal of the Royal Society Interface, 2018, 15, 20180346.	1.5	10

#	Article	IF	CITATIONS
379	Glass microparticle†versus microsphereâ€filled experimental dental adhesives. Journal of Applied Polymer Science, 2019, 136, 47832.	1.3	10
380	Assessing behaviour of osteoblastic cells in dynamic culture conditions using titanium-doped phosphate glass microcarriers. Journal of Tissue Engineering, 2019, 10, 204173141982577.	2.3	10
381	Poly-ε-Caprolactone/Fibrin-Alginate Scaffold: A New Pro-Angiogenic Composite Biomaterial for the Treatment of Bone Defects. Polymers, 2021, 13, 3399.	2.0	10
382	Hyperelastic, shapeâ€memorable, and ultraâ€cellâ€adhesive degradable polycaprolactoneâ€polyurethane copolymer for tissue regeneration. Bioengineering and Translational Medicine, 2022, 7, .	3.9	10
383	The recovery of mouse bladder epithelium after injury by 4-ethylsulphonylnaphtha- lene-1-sulphonamide. Journal of Pathology, 1972, 108, 151-156.	2.1	9
384	Comparison of the wet and dry fatigue properties of all ceramic crowns. Journal of Materials Science: Materials in Medicine, 1998, 9, 517-521.	1.7	9
385	An X-ray absorption spectroscopy study of the local environment of iron in degradable iron–phosphate glasses. Journal of Non-Crystalline Solids, 2008, 354, 5542-5546.	1.5	9
386	Impaired bacterial attachment to light activated Ni–Ti alloy. Materials Science and Engineering C, 2010, 30, 225-234.	3.8	9
387	Fabrication of a novel poly(3-hydroxyoctanoate) â^• nanoscale bioactive glass composite film with potential as a multifunctional wound dressing. AIP Conference Proceedings, 2010, , .	0.3	9
388	Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: setting, degradation and drug release considerations. Journal of Materials Science: Materials in Medicine, 2011, 22, 1993-2004.	1.7	9
389	Global expressivism and the flight from metaphysics. SynthÈse, 2017, 194, 4781-4797.	0.6	9
390	An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Advances, 2022, 12, 4005-4015.	1.7	9
391	Identification of phases in partially crystallised Ti-, Sr- and Zn-containing sodium calcium phosphates by two-dimensional NMR. Materials Chemistry and Physics, 2009, 114, 1008-1015.	2.0	8
392	Biological impact of nanodiamond particles – label free, high-resolution methods for nanotoxicity assessment. Nanotoxicology, 2019, 13, 1210-1226.	1.6	8
393	Mussel Inspired Chemistry and Bacteria Derived Polymers for Oral Mucosal Adhesion and Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2021, 9, 663764.	2.0	8
394	Positive Charge-doping on Carbon Nanotube Walls and Anion-directed Tunable Dispersion of the Derivatives. Bulletin of the Korean Chemical Society, 2011, 32, 1635-1639.	1.0	8
395	Effect of convergence angle and luting agent on the fracture strength of In ceram crowns. Journal of Materials Science: Materials in Medicine, 1999, 10, 493-496.	1.7	7
396	The effect of hot pressing on the physical properties of glass reinforced hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2004, 15, 705-710.	1.7	7

#	Article	IF	CITATIONS
397	Mechanical and Biological Performance of Calcium Phosphate Coatings on Porous Bone Scaffold. Journal of the American Ceramic Society, 2004, 87, 2135-2138.	1.9	7
398	Biocompatibility and other properties of phosphate-based glasses for medical applications. , 2009, , 156-182.		7
399	Microsatellite Variation in Namibian Brown Hyenas (Hyaena brunnea): Population Structure and Mating System Implications. Journal of Mammalogy, 2009, 90, 1381-1391.	0.6	7
400	Comparative study of photoinitiators for the synthesis and 3D printing of a light-curable, degradable polymer for custom-fit hard tissue implants. Biomedical Materials (Bristol), 2021, 16, 015007.	1.7	7
401	Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes. , 2013, 25, 317-325.		7
402	Cell morphology as a design parameter in the bioengineering of cell–biomaterial surface interactions. Biomaterials Science, 2021, 9, 8032-8050.	2.6	7
403	A Study on Myogenesis by Regulation of Reactive Oxygen Species and Cytotoxic Activity by Selenium Nanoparticles. Antioxidants, 2021, 10, 1727.	2.2	7
404	Investigating the Effects of Conditioned Media from Stem Cells of Human Exfoliated Deciduous Teeth on Dental Pulp Stem Cells. Biomedicines, 2022, 10, 906.	1.4	7
405	The Influence of Tetracycline Loading on the Surface Morphology and Biocompatibility of Films Made from P(3HB) Microspheres. Advanced Engineering Materials, 2010, 12, B260.	1.6	6
406	Physical properties and biocompatibility effects of doping SiO2 and TiO2 into phosphate-based glass for bone tissue engineering. Journal of Biomaterials Applications, 2018, 33, 271-280.	1.2	6
407	Viscoelastic and chemical properties of dentine after different exposure times to sodium hypochlorite, ethylenediaminetetraacetic acid and calcium hydroxide. Australian Endodontic Journal, 2020, 46, 234-243.	0.6	6
408	Antibacterial effect of titanium dioxide-doped phosphate glass microspheres filled total-etch dental adhesive on S. mutans biofilm. International Journal of Adhesion and Adhesives, 2021, 108, 102886.	1.4	6
409	Recurrent Missense Mutations in the STAT3 Gene in LGL Leukemia Provide Insights to Pathogenetic Mechanisms and Suggest Potential Diagnostic and Therapeutic Applications. Blood, 2011, 118, 936-936.	0.6	6
410	Research Note: Price uncertainty and the demand for health care. Health Policy and Planning, 1995, 10, 301-303.	1.0	5
411	Surface characterisation of various bone cements prepared with functionalised methacrylates/bioactive ceramics in relation to HOB behaviour. Acta Biomaterialia, 2006, 2, 143-154.	4.1	5
412	Investigation of the Mixed Alkali Effect in a Range of Phosphate Glasses. Key Engineering Materials, 2007, 330-332, 161-164.	0.4	5
413	Characterization of Physical and Biological Properties of a Caries-Arresting Liquid Containing Copper Doped Bioglass Nanoparticles. Pharmaceutics, 2022, 14, 1137.	2.0	5
414	Structure of calcium tetrasodium bis-cyclotriphosphate CaNa4(P3O9)2 by X-ray diffraction and solid-state NMR. Dalton Transactions RSC, 2002, , 1800-1805.	2.3	4

#	Article	IF	CITATIONS
415	In situ variable temperature X-ray diffraction studies on the transformations of nano-precursors to La–Ni–O phases. Journal of Solid State Chemistry, 2011, 184, 1688-1694.	1.4	4
416	Rortian Realism. Metaphilosophy, 2018, 49, 90-114.	0.2	4
417	Effect of Heated Sodium Hypochlorite on the Viscoelastic Properties of Dentin Evaluated Using Dynamic Mechanical Analysis. Journal of Endodontics, 2019, 45, 1155-1160.	1.4	4
418	Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex. Nanomaterials, 2021, 11, 596.	1.9	4
419	Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. International Journal of Molecular Sciences, 2021, 22, 12852.	1.8	4
420	Photocatalytic effect-assisted antimicrobial activities of acrylic resin incorporating zinc oxide nanoflakes. , 2022, 139, 213025.		4
421	Simple computer controlled goniophotometer for the measurement of early stage changes in biodegradable polymers. Journal of Biomedical Engineering, 1990, 12, 102-104.	0.7	3
422	Sol-Gel Apatite Films on Titanium Implant for Hard Tissue Regeneration. Key Engineering Materials, 2003, 254-256, 423-426.	0.4	3
423	Zinc and strontium based phosphate glass beads: a novel material for bone tissue engineering. Biomedical Materials (Bristol), 2017, 12, 065011.	1.7	3
424	Longitudinal changes in measles antibody titers in plasma donors and minimum antibody levels of immunoglobulin products for treatment of primary immunodeficiency. Transfusion, 2018, 58, 3065-3071.	0.8	3
425	The effect of NaOCl and heat treatment on static and dynamic mechanical properties and chemical changes of dentine. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 330-338.	1.5	3
426	Effect of root canal irrigant (sodium hypochlorite & saline) delivery at different temperatures and durations on pre-load and cyclic-loading surface-strain of anatomically different premolars. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104640.	1.5	3
427	Abstract 3175: Genomic and transcriptomic data integration in chronic myelomonocytic leukemia reveals a novel fusion gene involving onco-miR-125b-2. , 2012, , .		3
428	An Intelligent Degradable Polymer Composite Which Closely Matches Bone. Journal of Intelligent Material Systems and Structures, 1994, 5, 122-126.	1.4	2
429	Functionalized Poly(<scp>D</scp> , <scp>L</scp> â€lactide) for Pulmonary Epithelial Cell Culture. Advanced Engineering Materials, 2010, 12, B101.	1.6	2
430	Non-Reductive Naturalism and the Vocabulary of Agency. Contemporary Pragmatism, 2013, 10, 155-172.	0.1	2
431	Digital Image Correlation and Strain Gauges to Map and Compare Strain in Teeth with Different Quantity and Quality of Remaining Tooth Structure. International Journal of Prosthodontics, 2018, 32, 82-90.	0.7	2
432	Effect of sodium hypochlorite on adhesive charactersitics of dentin: A systematic review of laboratory-based testing. International Journal of Adhesion and Adhesives, 2019, 95, 102419.	1.4	2

#	Article	IF	CITATIONS
433	Biological evaluation of glass reinforced hydroxyapatite by flow cytometry. , 1997, , 575-578.		2
434	A simple device for the production of an experimental fracture in the rat femur. Journal of Biomedical Engineering, 1991, 13, 176.	0.7	1
435	Biocompatibility and Biological Tests. , 2002, , 793-813.		1
436	Bioactive Porous Bone Scaffold Coated with Biphasic Calcium Phosphates. Key Engineering Materials, 2003, 254-256, 1103-1106.	0.4	1
437	Effects of Ca-Containing Phosphate Glasses on T Lymphocytes In Vitro. Key Engineering Materials, 2005, 284-286, 597-602.	0.4	1
438	Solid State NMR as A Probe of Inorganic Materials:Examples From Glasses and Sol-Gels. Materials Research Society Symposia Proceedings, 2006, 984, 1.	0.1	1
439	Structural Investigations of Titanium Metaphosphate Glasses by Ambient and Highâ€ <scp>T</scp> emperature Xâ€ <scp>R</scp> ay Diffraction Techniques. Macromolecular Symposia, 2013, 334, 10-16.	0.4	1
440	Ceramic Biomaterials as Tissue Scaffolds. , 2015, , 163-174.		1
441	Abstract 4580: Personalized treatment selection for therapy-resistant AML by integrating ex-vivo drug sensitivity and resistance testing (DSRT) as well as serial genomic, transcriptomic and phosphoproteomic profiling. , 2012, , .		1
442	Abstract 5067: Exome sequencing reveals both DNA sequence and copy number changes in AML: Potential driver changes and mechanisms of drug resistance revealed from serial samples from the same patients. , 2012, , .		1
443	Enhancing Distraction Osteogenesis With Carbon Fiber Reinforced Polyether Ether Ketone Bone Pins and a Three-Dimensional Printed Transfer Device to Permit Artifact-Free Three-Dimensional Magnetic Resonance Imaging. Journal of Craniofacial Surgery, 2021, 32, 360-364.	0.3	1
444	Improvement of Biological Effects of Root-Filling Materials for Primary Teeth by Incorporating Sodium Iodide. Molecules, 2022, 27, 2927.	1.7	1
445	Reply to Dr. Pinsky. American Journal of Medical Genetics Part A, 1983, 14, 793-793.	2.4	0
446	In Appreciation of Our Reviewers. Journal of Prosthodontics, 2005, 14, 219-220.	1.7	0
447	British Society for Matrix Biology Autumn Meeting †Joint with the UK Tissue & Cell Engineering Society, University of Bristol, UK. International Journal of Experimental Pathology, 2005, 86, A1-A56.	0.6	0
448	Jonathan K. C. Knowles. Nature Reviews Drug Discovery, 2007, 6, 862-862.	21.5	0
449	The effects of oxalateâ€containing products on the exposed dentine surface: an SEM investigation. Journal of Oral Rehabilitation, 2001, 28, 1037-1044.	1.3	0
450	Editorial. Journal of Biomaterials Applications, 2009, 24, 5-5.	1.2	0

#	Article	IF	CITATIONS
451	Scientific Metaphysics, by Don Ross, James Ladyman & Harold Kincaid (eds). Australasian Journal of Philosophy, 2014, 92, 210-211.	0.5	0
452	The Inessential Indexical: On the Philosophical Insignificance of Perspective and the First Person. Philosophical Quarterly, 2017, 67, 186-189.	0.3	0
453	JTE: first Impact Factor of 2.683. Journal of Tissue Engineering, 2018, 9, 204173141879279.	2.3	0
454	Development of a Cancer Pharmacopeia-Wide Ex-Vivo Drug Sensitivity and Resistance Testing (DSRT) Platform: Identification of MEK and mTOR As Patient-Specific Molecular Drivers of Adult AML and Potent Therapeutic Combinations with Dasatinib. Blood, 2011, 118, 2487-2487.	0.6	0
455	Abstract 895: Quantitative drug sensitivity and resistance testing (DSRT) of primary ex vivo AML blasts highlights mTOR and MEK as potential key molecular driver signals of therapeutic significance. , 2012, , .		0
456	Abstract 3188: Development of a cancer pharmacopeia-wideex-vivodrug sensitivity and resistance testing (DSRT) platform for AML: Towards individually optimized therapy and improved understanding of drug resistance patterns. , 2012, , .		0
457	Abstract 5588: Functional drug sensitivity and resistance profiling of AML patient cells defines a disease-specific combination of druggable signal addictions , 2013, , .		0
458	Identification Of AML Subtype-Selective Drugs By Functional Ex Vivo Drug Sensitivity and Resistance Testing and Genomic Profiling. Blood, 2013, 122, 482-482.	0.6	0
459	JAK1/2 and BCL2 Inhibitors Synergize to Counter-Act Bone Marrow Stromal Cell-Induced Protection of AML. Blood, 2015, 126, 867-867.	0.6	0