Midori A Yenari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9056252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The inflammatory response in stroke. Journal of Neuroimmunology, 2007, 184, 53-68.	2.3	1,042
2	Neuroprotective mechanisms of hypothermia in brain ischaemia. Nature Reviews Neuroscience, 2012, 13, 267-278.	10.2	472
3	A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. Journal of Neurochemistry, 2009, 109, 1144-1156.	3.9	372
4	Microglial Activation in Stroke: Therapeutic Targets. Neurotherapeutics, 2010, 7, 378-391.	4.4	328
5	Microglia Potentiate Damage to Blood–Brain Barrier Constituents. Stroke, 2006, 37, 1087-1093.	2.0	324
6	Optimal Depth and Duration of Mild Hypothermia in a Focal Model of Transient Cerebral Ischemia. Stroke, 1998, 29, 2171-2180.	2.0	314
7	Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Annals of Neurology, 1998, 44, 584-591.	5.3	311
8	Bclâ€2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome <i>c</i> translocation and caspaseâ€3 activity. Journal of Neurochemistry, 2003, 85, 1026-1036.	3.9	290
9	Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Deficiency Attenuates Phagocytic Activities of Microglia and Exacerbates Ischemic Damage in Experimental Stroke. Journal of Neuroscience, 2015, 35, 3384-3396.	3.6	277
10	Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurological Research, 2004, 26, 884-892.	1.3	266
11	Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Annals of Neurology, 2008, 64, 654-663.	5.3	246
12	Antiapoptotic and Anti-inflammatory Mechanisms of Heat-Shock Protein Protection. Annals of the New York Academy of Sciences, 2005, 1053, 74-83.	3.8	237
13	The neuroprotective potential of heat shock protein 70 (HSP70). Trends in Molecular Medicine, 1999, 5, 525-531.	2.6	210
14	Anti-Inflammatory Effects of the 70 kDa Heat Shock Protein in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 53-63.	4.3	210
15	Inflammatory Responses in Brain Ischemia. Current Medicinal Chemistry, 2015, 22, 1258-1277.	2.4	210
16	Therapeutic Hypothermia for Acute Ischemic Stroke. Stroke, 2004, 35, 1482-1489.	2.0	195
17	Mild Hypothermia Reduces Apoptosis of Mouse Neurons <i>In vitro</i> Early in the Cascade. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 21-28.	4.3	189
18	Protein Kinase C Â Mediates Cerebral Reperfusion Injury In Vivo. Journal of Neuroscience, 2004, 24, 6880-6888.	3.6	181

#	Article	IF	CITATIONS
19	Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. Journal of Experimental Biology, 2004, 207, 3213-3220.	1.7	179
20	Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Frontiers in Neurology, 2017, 8, 467.	2.4	178
21	Influence of Mild Hypothermia on Inducible Nitric Oxide Synthase Expression and Reactive Nitrogen Production in Experimental Stroke and Inflammation. Journal of Neuroscience, 2002, 22, 3921-3928.	3.6	176
22	Endotoxin-activated microglia injure brain derived endothelial cells via NF-ήB, JAK-STAT and JNK stress kinase pathways. Journal of Inflammation, 2011, 8, 7.	3.4	163
23	Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. Journal of Neurosurgery, 2001, 94, 90-96.	1.6	161
24	Many Mechanisms for Hsp70 Protection From Cerebral Ischemia. Journal of Neurosurgical Anesthesiology, 2004, 16, 53-61.	1.2	153
25	Mild Hypothermia Inhibits Inflammation After Experimental Stroke and Brain Inflammation. Stroke, 2003, 34, 2495-2501.	2.0	151
26	Overexpression of HSP72 after Induction of Experimental Stroke Protects Neurons from Ischemic Damage. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1303-1309.	4.3	149
27	Metabolic Downregulation. Stroke, 2008, 39, 2910-2917.	2.0	145
28	Influence of hypothermia on post-ischemic inflammation: Role of nuclear factor kappa B (NFκB). Neurochemistry International, 2006, 49, 164-169.	3.8	132
29	Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). Stroke, 2016, 47, 2888-2895.	2.0	131
30	Mild Hypothermia Inhibits Nuclear Factor-κB Translocation in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 589-598.	4.3	127
31	Therapeutic hypothermia: neuroprotective mechanisms. Frontiers in Bioscience - Landmark, 2007, 12, 816.	3.0	127
32	Reconsidering Neuroprotection in the Reperfusion Era. Stroke, 2017, 48, 3413-3419.	2.0	125
33	Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: Influence of Bcl-2. Annals of Neurology, 2002, 52, 160-167.	5.3	123
34	Hyperglycemia promotes tissue plasminogen activatorâ€induced hemorrhage by Increasing superoxide production. Annals of Neurology, 2011, 70, 583-590.	5.3	121
35	Differential Neuroprotection from Human Heat Shock Protein 70 Overexpression in in Vitro and in Vivo Models of Ischemia and Ischemia-like Conditions. Experimental Neurology, 2001, 170, 129-139.	4.1	118
36	The role of the microglia in acute CNS injury. Metabolic Brain Disease, 2015, 30, 381-392.	2.9	116

#	Article	IF	CITATIONS
37	Calbindin D28K Overexpression Protects Striatal Neurons From Transient Focal Cerebral Ischemia. Stroke, 2001, 32, 1028-1035.	2.0	115
38	Thrombolysis with tissue plasminogen activator (tPA) is temperature dependent. Thrombosis Research, 1995, 77, 475-481.	1.7	111
39	Effects of Mild Hypothermia on Superoxide Anion Production, Superoxide Dismutase Expression, and Activity Following Transient Focal Cerebral Ischemia. Neurobiology of Disease, 2002, 11, 28-42.	4.4	110
40	Does Inflammation after Stroke Affect the Developing Brain Differently than Adult Brain?. Developmental Neuroscience, 2009, 31, 378-393.	2.0	109
41	Mild Hypothermia Attenuates Cytochrome C Release but Does Not Alter Bcl-2 Expression or Caspase Activation after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 29-38.	4.3	108
42	Therapeutic Hypothermia for Brain Ischemia. Stroke, 2010, 41, S72-4.	2.0	108
43	Hu23F2G, an Antibody Recognizing the Leukocyte CD11/CD18 Integrin, Reduces Injury in a Rabbit Model of Transient Focal Cerebral Ischemia. Experimental Neurology, 1998, 153, 223-233.	4.1	107
44	Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Neuropharmacology, 2018, 134, 302-309.	4.1	104
45	Inflammation and NFκB activation is decreased by hypothermia following global cerebral ischemia. Neurobiology of Disease, 2009, 33, 301-312.	4.4	95
46	Mechanisms and Potential Therapeutic Applications of Microglial Activation after Brain Injury. CNS Neuroscience and Therapeutics, 2015, 21, 309-319.	3.9	95
47	Glycogen synthase kinase 3β inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Experimental Neurology, 2004, 188, 378-386.	4.1	93
48	Bcl-2 Transfection via Herpes Simplex Virus Blocks Apoptosis-Inducing Factor Translocation after Focal Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 681-692.	4.3	92
49	Therapeutic Hypothermia for Acute Stroke. International Journal of Stroke, 2006, 1, 9-19.	5.9	91
50	Microglial P2Y12 Deficiency/Inhibition Protects against Brain Ischemia. PLoS ONE, 2013, 8, e70927.	2.5	90
51	Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. Molecular Brain Research, 2001, 95, 75-85.	2.3	85
52	Antiapoptotic and Antiâ€inflammatory Mechanisms of Heatâ€Shock Protein Protection. Annals of the New York Academy of Sciences, 2005, 1053, 74-83.	3.8	85
53	Clinical Aspects of DWI. NMR in Biomedicine, 1995, 8, 387-396.	2.8	84
54	Reduction in levels of matrix metalloproteinases and increased expression of tissue inhibitor of metalloproteinase—2 in response to mild hypothermia therapy in experimental stroke. Journal of Neurosurgery, 2005, 103, 289-297.	1.6	80

#	Article	IF	CITATIONS
55	Biphasic Cytochrome c Release After Transient Global Ischemia and its Inhibition by Hypothermia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1119-1129.	4.3	75
56	Neuroprotection: Heat Shock Proteins. Current Medical Research and Opinion, 2002, 18, s55-s60.	1.9	74
57	The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opinion on Therapeutic Targets, 2018, 22, 191-199.	3.4	74
58	Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiology of Disease, 2009, 36, 223-231.	4.4	73
59	Targeting Reperfusion Injury in the Age of Mechanical Thrombectomy. Stroke, 2018, 49, 1796-1802.	2.0	71
60	Cellular and molecular events underlying ischemia-induced neuronal apoptosis. Drug News and Perspectives, 2003, 16, 497.	1.5	70
61	Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology, 2012, 20, 177-185.	3.9	66
62	Significance of marrowâ€derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke. Annals of Neurology, 2011, 70, 606-615.	5.3	64
63	NADPH oxidase in stroke and cerebrovascular disease. Neurological Research, 2012, 34, 338-345.	1.3	64
64	Inflammation in adult and neonatal stroke. Clinical Neuroscience Research, 2006, 6, 293-313.	0.8	61
65	Diffusion- and perfusion-weighted magnetic resonance imaging of focal cerebral ischemia and cortical spreading depression under conditions of mild hypothermia. Brain Research, 2000, 885, 208-219.	2.2	60
66	Time-course and treatment response with SNX-111, an N-type calcium channel blocker, in a rodent model of focal cerebral ischemia using diffusion-weighted MRI. Brain Research, 1996, 739, 36-45.	2.2	59
67	Plasma Lipoprotein-associated Phospholipase A2 and Superoxide Dismutase are Independent Predicators of Cognitive Impairment in Cerebral Small Vessel Disease Patients: Diagnosis and Assessment. , 2019, 10, 834.		58
68	The role of NOX inhibitors in neurodegenerative diseases. IBRO Reports, 2019, 7, 59-69.	0.3	58
69	Mild Postischemic Hypothermia Prolongs the Time Window for Gene Therapy by Inhibiting Cytochrome c Release. Stroke, 2004, 35, 572-577.	2.0	57
70	^{99m} Tc Annexin V Imaging of Neonatal Hypoxic Brain Injury. Stroke, 2000, 31, 2692-2700.	2.0	56
71	The 70 kDa heat shock protein protects against experimental traumatic brain injury. Neurobiology of Disease, 2013, 58, 289-295.	4.4	56
72	The immune modulating properties of the heat shock proteins after brain injury. Anatomy and Cell Biology, 2013, 46, 1.	1.0	56

#	Article	IF	CITATIONS
73	FasL shedding is reduced by hypothermia in experimental stroke. Journal of Neurochemistry, 2008, 106, 541-550.	3.9	55
74	Conditions of protection by hypothermia and effects on apoptotic pathways in a rat model of permanent middle cerebral artery occlusion. Journal of Neurosurgery, 2007, 107, 636-641.	1.6	52
75	Triggering receptor expressed on myeloid cells-2 expression in the brain is required for maximal phagocytic activity and improved neurological outcomes following experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1906-1918.	4.3	49
76	Cellular targets of brain inflammation in stroke. Current Opinion in Investigational Drugs, 2003, 4, 522-9.	2.3	49
77	Hypothermia as a cytoprotective strategy in ischemic tissue injury. Ageing Research Reviews, 2010, 9, 61-68.	10.9	48
78	Monitoring the Protective Effects of Minocycline Treatment with Radiolabeled Annexin V in an Experimental Model of Focal Cerebral Ischemia. Journal of Nuclear Medicine, 2007, 48, 1822-1828.	5.0	47
79	Mild Hypothermia Suppresses Calcium-Sensing Receptor (CaSR) Induction Following Forebrain Ischemia While Increasing GABA-B Receptor 1 (GABA-B-R1) Expression. Translational Stroke Research, 2011, 2, 195-201.	4.2	47
80	Calciumâ€sensing receptor (CaSR) as a novel target for ischemic neuroprotection. Annals of Clinical and Translational Neurology, 2014, 1, 851-866.	3.7	46
81	Combination Therapy with Hypothermia for Treatment of Cerebral Ischemia. Journal of Neurotrauma, 2009, 26, 325-331.	3.4	45
82	Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury. Cells, 2020, 9, 2020.	4.1	43
83	Direct protection of cultured neurons from ischemia-like injury by minocycline. Anatomy and Cell Biology, 2010, 43, 325.	1.0	42
84	Intra-Arterial rtPA Treatment of Stroke Assessed by Diffusion- and Perfusion-Weighted MRI. Stroke, 1999, 30, 678-680.	2.0	41
85	NOX Inhibitors - A Promising Avenue for Ischemic Stroke. Experimental Neurobiology, 2017, 26, 195-205.	1.6	40
86	Mild Hypothermia Reduces Tissue Plasminogen Activator-Related Hemorrhage and Blood Brain Barrier Disruption After Experimental Stroke. Therapeutic Hypothermia and Temperature Management, 2013, 3, 74-83.	0.9	38
87	L-selectin inhibition does not reduce injury in a rabbit model of transient focal cerebral ischemia. Neurological Research, 2001, 23, 72-78.	1.3	37
88	Gene Therapy and Hypothermia for Stroke Treatment. Annals of the New York Academy of Sciences, 2003, 993, 54-68.	3.8	37
89	The 70 kDa heat shock protein suppresses matrix metalloproteinases in astrocytes. NeuroReport, 2004, 15, 499-502.	1.2	36
90	Improved Perfusion with rt-PA and Hirulog in a Rabbit Model of Embolic Stroke. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 401-411.	4.3	35

#	Article	IF	CITATIONS
91	Heat shock protein signaling in brain ischemia and injury. Neuroscience Letters, 2020, 715, 134642.	2.1	34
92	Ischemic vulnerability of primary murine microglial cultures. Neuroscience Letters, 2001, 298, 5-8.	2.1	32
93	70-kDa Heat Shock Protein Downregulates Dynamin in Experimental Stroke. Stroke, 2016, 47, 2103-2111.	2.0	32
94	Microglial Calcium Release-Activated Calcium Channel Inhibition Improves Outcome from Experimental Traumatic Brain Injury and Microglia-Induced Neuronal Death. Journal of Neurotrauma, 2019, 36, 996-1007.	3.4	31
95	Vascular, inflammatory and metabolic risk factors in relation to dementia in Parkinson's disease patients with type 2 diabetes mellitus. Aging, 2020, 12, 15682-15704.	3.1	29
96	Triggering Receptor Expressed on Myeloid Cells-2 Correlates to Hypothermic Neuroprotection in Ischemic Stroke. Therapeutic Hypothermia and Temperature Management, 2013, 3, 189-198.	0.9	27
97	Neuroprotection: heat shock proteins. Current Medical Research and Opinion, 2002, 18 Suppl 2, s55-60.	1.9	27
98	Gene Therapy for Treatment of Cerebral Ischemia Using Defective Herpes Simplex Viral Vectors. Annals of the New York Academy of Sciences, 2001, 939, 340-357.	3.8	26
99	Hypothermia and Pharmacological Regimens that Prevent Overexpression and Overactivity of the Extracellular Calcium-Sensing Receptor Protect Neurons against Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 1170-1176.	3.4	26
100	Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia, 2015, 63, 1200-1212.	4.9	25
101	Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiology of Disease, 2022, 170, 105750.	4.4	24
102	Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose?. Experimental Neurology, 2019, 322, 113060.	4.1	22
103	Advances in Stroke 2017. Stroke, 2018, 49, e174-e199.	2.0	21
104	Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Current Medicinal Chemistry, 2019, 26, 5430-5455.	2.4	19
105	The application of HSP70 as a target for gene therapy. Frontiers in Bioscience - Landmark, 2006, 11, 699.	3.0	17
106	Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Neurological Research, 2001, 23, 543-552.	1.3	15
107	Clinical perspectives on ischemic stroke. Experimental Neurology, 2021, 338, 113599.	4.1	14
108	Hypothermia Identifies Dynamin as a Potential Therapeutic Target in Experimental Stroke. Therapeutic Hypothermia and Temperature Management, 2017, 7, 171-177.	0.9	9

Midori A Yenari

#	Article	IF	CITATIONS
109	Cystatin C is a potential predictor of unfavorable outcomes for cerebral ischemia with intravenous tissue plasminogen activator treatment: A multicenter prospective nested case–control study. European Journal of Neurology, 2021, 28, 1265-1274.	3.3	9
110	Cofilin-actin rod formation in experimental stroke is attenuated by therapeutic hypothermia and overexpression of the inducible 70 kD inducible heat shock protein (Hsp70). Brain Circulation, 2019, 5, 225.	1.8	9
111	Effect on gene expression of therapeutic hypothermia in cerebral ischemia. Future Neurology, 2007, 2, 435-440.	0.5	8
112	Fibrinogen is an Independent Risk Factor for White Matter Hyperintensities in CADASIL but not in Sporadic Cerebral Small Vessel Disease Patients. , 2021, 12, 801.		8
113	Bone Marrow Chimeras in the Study of Experimental Stroke. Translational Stroke Research, 2012, 3, 341-347.	4.2	7
114	Microglia, the brain's double agent. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S3-S5.	4.3	7
115	Pathophysiology of acute ischemic stroke Cleveland Clinic Journal of Medicine, 2004, 71, S25-S25.	1.3	7
116	A Standardized MRI Stroke Protocol: Comparison with CT in Hyperacute Intracerebral Hemorrhage. Stroke, 1999, 30, 1974-1981.	2.0	6
117	Therapeutic Hypothermia in Stroke. Stroke Research and Treatment, 2011, 2011, 1-1.	0.8	6
118	Mild Hypothermia Decreases GSK3β Expression Following Global Cerebral Ischemia. Neurocritical Care, 2005, 2, 212-217.	2.4	4
119	Activated complement protein C5a does not affect brain-derived endothelial cell viability and zonula occludens-1 levels following oxygen-glucose deprivation. Brain Circulation, 2017, 3, 14-20.	1.8	4
120	Therapeutic Hypothermia after Cardiac Arrest: Experience at an Academically Affiliated Community-Based Veterans Affairs Medical Center. Stroke Research and Treatment, 2011, 2011, 1-8.	0.8	3
121	Postinjury Neuroplasticity in Central Neural Networks. Neural Plasticity, 2015, 2015, 1-2.	2.2	2
122	Temperature Affects Thrombolytic Efficacy Using rt-PA and Eptifibatide, an In Vitro Study: Editorial Commentary on Meunier et al., 2012. Therapeutic Hypothermia and Temperature Management, 2012, 2, 166-166.	0.9	1
123	Neuroprotection of Heat Shock Proteins (HSPs) in Brain Ischemia. Translational Medicine Research, 2017, , 383-395.	0.0	1
124	Role of Heat Shock Proteins (HSP) in Neuroprotection for Ischemic Stroke. Heat Shock Proteins, 2019, , 69-82.	0.2	1
125	Introduction: Immune mechanisms of neurodegeneration. Clinical Neuroscience Research, 2006, 6, 225.	0.8	0
126	Gene therapy for ischemic neuronal injury. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S693-S693.	4.3	0

#	Article	IF	CITATIONS
127	Microglia potentiate injury to the blood brain barrier: Reverseal by minocycline. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S100-S100.	4.3	0

128 Hypothermia to Identify Therapeutic Targets for Stroke Treatment. , 2012, , 305-320.