List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9055579/publications.pdf Version: 2024-02-01

Ι ΕΝΙΑ ΔΙ-ΗΑΡΤΗΙ

#	Article	IF	CITATIONS
1	Next-Generation Serology by Mass Spectrometry: Readout of the SARS-CoV-2 Antibody Repertoire. Journal of Proteome Research, 2022, 21, 274-288.	1.8	16
2	Anti-HIV Drugs Cause Mitochondrial Dysfunction in Monocyte-Derived Macrophages. Antimicrobial Agents and Chemotherapy, 2022, 66, e0194121.	1.4	8
3	β-catenin regulates HIV latency and modulates HIV reactivation. PLoS Pathogens, 2022, 18, e1010354.	2.1	11
4	Wnt/Ĵ²-Catenin Protects Lymphocytes from HIV-Mediated Apoptosis via Induction of Bcl-xL. Viruses, 2022, 14, 1469.	1.5	3
5	The far-reaching HAND of cART: cART effects on astrocytes. Journal of NeuroImmune Pharmacology, 2021, 16, 144-158.	2.1	19
6	What HIV in the Brain Can Teach Us About SARS-CoV-2 Neurological Complications?. AIDS Research and Human Retroviruses, 2021, 37, 255-265.	0.5	15
7	Change in Circulating Undercarboxylated Osteocalcin (ucOCN) Is Associated With Fat Accumulation in HIV-Seropositive Women. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, 86, e139-e145.	0.9	3
8	β-Catenin Restricts Zika Virus Internalization by Downregulating Axl. Journal of Virology, 2021, 95, e0070521.	1.5	9
9	HIV in the Brain: Identifying Viral Reservoirs and Addressing the Challenges of an HIV Cure. Vaccines, 2021, 9, 867.	2.1	27
10	CD32 is enriched on CD4dimCD8bright T cells. PLoS ONE, 2020, 15, e0239157.	1.1	5
11	Canonical Wnts Mediate CD8+ T Cell Noncytolytic Anti–HIV-1 Activity and Correlate with HIV-1 Clinical Status. Journal of Immunology, 2020, 205, 2046-2055.	0.4	11
12	Negative regulation of IL-8 in human astrocytes depends on β-catenin while positive regulation is mediated by TCFs/LEF/ATF2 interaction. Cytokine, 2020, 136, 155252.	1.4	10
13	HCMV infection induces AD pathology in astrocytes in vitro. Alzheimer's and Dementia, 2020, 16, e039591.	0.4	1
14	HIV infects astrocytes in vivo and egresses from the brain to the periphery. PLoS Pathogens, 2020, 16, e1008381.	2.1	106
15	β-Catenin and TCFs/LEF signaling discordantly regulate IL-6 expression in astrocytes. Cell Communication and Signaling, 2020, 18, 93.	2.7	21
16	Ginkgolic acid inhibits fusion of enveloped viruses. Scientific Reports, 2020, 10, 4746.	1.6	42
17	Circulating sclerostin is associated with bone mineral density independent of HIV-serostatus. Bone Reports, 2020, 12, 100279.	0.2	7
18	Triumeq Increases Excitability of Pyramidal Neurons in the Medial Prefrontal Cortex by Facilitating Voltage-Gated Ca2+ Channel Function. Frontiers in Pharmacology, 2020, 11, 617149.	1.6	4

#	Article	IF	CITATIONS
19	Aging and HIV-1 alter the function of specific K+ channels in prefrontal cortex pyramidal neurons. Neuroscience Letters, 2019, 708, 134341.	1.0	14
20	Letter to Editor. Journal of NeuroImmune Pharmacology, 2019, 14, 6-6.	2.1	6
21	Methamphetamine decreases K ⁺ channel function in human fetal astrocytes by activating the trace amineâ€associated receptor typeâ€1. Journal of Neurochemistry, 2019, 148, 29-45.	2.1	8
22	Wnt7a induces a unique phenotype of monocyteâ€derived macrophages with lower phagocytic capacity and differential expression of pro†and antiâ€inflammatory cytokines. Immunology, 2018, 153, 203-213.	2.0	17
23	Aging alters voltage-gated calcium channels in prefrontal cortex pyramidal neurons in the HIV brain. Journal of NeuroVirology, 2018, 24, 113-118.	1.0	7
24	<scp>HIV</scp> and drug abuse mediate astrocyte senescence in a β ateninâ€dependent manner leading to neuronal toxicity. Aging Cell, 2017, 16, 956-965.	3.0	43
25	Plasma dickkopf-related protein 1, an antagonist of the Wnt pathway, is associated with HIV-associated neurocognitive impairment. Aids, 2017, 31, 1379-1385.	1.0	9
26	β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. Journal of Neuroinflammation, 2016, 13, 242.	3.1	46
27	Combined chronic blockade of hyper-active L-type calcium channels and NMDA receptors ameliorates HIV-1 associated hyper-excitability of mPFC pyramidal neurons. Neurobiology of Disease, 2016, 94, 85-94.	2.1	12
28	Migration of CD8+ T Cells into the Central Nervous System Gives Rise to Highly Potent Anti-HIV CD4dimCD8bright T Cells in a Wnt Signaling–Dependent Manner. Journal of Immunology, 2016, 196, 317-327.	0.4	18
29	Dynamic interaction between astrocytes and infiltrating <scp>PBMC</scp> s in context of neuro <scp>AIDS</scp> . Glia, 2015, 63, 441-451.	2.5	25
30	HIV Infection Leads to Redistribution of Leaky Claudin-2 in the Intestine of Humanized SCID IL-2R ^{â^' â^'} Hu-PBMC Mice. AIDS Research and Human Retroviruses, 2015, 31, 774-775.	0.5	3
31	Porcupine Is Not Required for the Production of the Majority of Wnts from Primary Human Astrocytes and CD8+ T Cells. PLoS ONE, 2014, 9, e92159.	1.1	19
32	β-Catenin/TCF-4 Signaling Regulates Susceptibility of Macrophages and Resistance of Monocytes to HIV-1 Productive Infection. Current HIV Research, 2014, 12, 164-173.	0.2	23
33	HIV Infection Accelerates Gastrointestinal Tumor Outgrowth in NSG-HuPBL Mice. AIDS Research and Human Retroviruses, 2014, 30, 677-684.	0.5	14
34	Epigenetic Regulation of HIV-1 Latency in Astrocytes. Journal of Virology, 2014, 88, 3031-3038.	1.5	78
35	17β-Estradiol inhibits HIV-1 by inducing a complex formation between β-catenin and estrogen receptor α on the HIV promoter to suppress HIV transcription. Virology, 2013, 443, 375-383.	1.1	68
36	NKG2D signaling on CD8+ T cells represses T-bet and rescues CD4-unhelped CD8+ T cell memory recall but not effector responses. Nature Medicine, 2012, 18, 422-428.	15.2	56

#	Article	IF	CITATIONS
37	Role of Â-Catenin and TCF/LEF Family Members in Transcriptional Activity of HIV in Astrocytes. Journal of Virology, 2012, 86, 1911-1921.	1.5	81
38	Identification of Novel T Cell Factor 4 (TCF-4) Binding Sites on the HIV Long Terminal Repeat Which Associate with TCF-4, Â-Catenin, and SMAR1 To Repress HIV Transcription. Journal of Virology, 2012, 86, 9495-9503.	1.5	47
39	Interplay Between Wnt/β-Catenin Signaling and HIV: Virologic and Biologic Consequences in the CNS. Journal of NeuroImmune Pharmacology, 2012, 7, 731-739.	2.1	36
40	Human Immunodeficiency Virus Type 1 (HIV-1) Transactivator of Transcription through Its Intact Core and Cysteine-Rich Domains Inhibits Wnt/β-Catenin Signaling in Astrocytes: Relevance to HIV Neuropathogenesis. Journal of Neuroscience, 2012, 32, 16306-16313.	1.7	51
41	Wnt/β-catenin and its Diverse Physiological Cell Signaling Pathways in Neurodegenerative and Neuropsychiatric Disorders. Journal of NeuroImmune Pharmacology, 2012, 7, 725-730.	2.1	66
42	Editorial [Hot Topic: Mechanisms of HIV-1 Latency Post HAART Treatment Area (Guest Editors: Lena) Tj ETQq0 (0 0 rgBT /0	verlock 10 Tf
43	Role of β-Catenin/TCF-4 Signaling in HIV Replication and Pathogenesis: Insights to Informing Novel Anti-HIV Molecular Therapeutics. Journal of NeuroImmune Pharmacology, 2011, 6, 247-259.	2.1	21
44	Methamphetamine and HIV-1 Tat Down Regulate β-catenin Signaling: Implications for Methampetamine Abuse and HIV-1 Co-morbidity. Journal of NeuroImmune Pharmacology, 2011, 6, 597-607.	2.1	36
45	IFN-γ Mediates Enhancement of HIV Replication in Astrocytes by Inducing an Antagonist of the β-Catenin Pathway (DKK1) in a STAT 3-Dependent Manner. Journal of Immunology, 2011, 186, 6771-6778.	0.4	79
46	Human FasL Gene Is a Target of β-Catenin/T-Cell Factor Pathway and Complex FasL Haplotypes Alter Promoter Functions. PLoS ONE, 2011, 6, e26143.	1.1	16
47	β-Catenin Signaling Mediates CD4 Expression on Mature CD8+ T Cells. Journal of Immunology, 2010, 185, 2013-2019.	0.4	25
48	Potent HIV-specific responses are enriched in a unique subset of CD8+ T cells that coexpresses CD4 on its surface. Blood, 2009, 114, 3841-3853.	0.6	38
49	Active β-Catenin Signaling Is an Inhibitory Pathway for Human Immunodeficiency Virus Replication in Peripheral Blood Mononuclear Cells. Journal of Virology, 2008, 82, 2813-2820.	1.5	78
50	Human Immunodeficiency Virus-Restricted Replication in Astrocytes and the Ability of Gamma Interferon To Modulate This Restriction Are Regulated by a Downstream Effector of the Wnt Signaling Pathway. Journal of Virology, 2007, 81, 5864-5871.	1.5	62
51	HIV Infection of Primary CD4+Th2 Cells, Defined by Expression of The Chemoattractant Receptor-Homologous (CRTH2), Induces A Th0 Phenotype. AIDS Research and Human Retroviruses, 2007, 23, 269-277.	0.5	6
52	Wholeâ€Blood Interleukinâ€18 Level during Early HIVâ€1 Infection Is Associated with Reduced CXCR4 Coreceptor Expression and Interferonâ€Î³ Levels. Journal of Infectious Diseases, 2007, 195, 734-738.	1.9	14
53	Negative‣trand Hepatitis C Virus (HCV) RNA in Peripheral Blood Mononuclear Cells from Antiâ€HCV–Positive/HIVâ€Infected Women. Journal of Infectious Diseases, 2007, 195, 124-133. 	1.9	63
54	Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals. Immunology, 2007, 120, 526-535.	2.0	52

#	Article	IF	CITATIONS
55	Immunophenotypic alterations in acute and early HIV infection. Clinical Immunology, 2007, 125, 299-308.	1.4	10
56	Evaluating the Impact of Hepatitis C Virus (HCV) on Highly Active Antiretroviral Therapy–Mediated Immune Responses in HCV/HIVâ€Coinfected Women: Role of HCV on Expression of Primed/Memory T Cells. Journal of Infectious Diseases, 2006, 193, 1202-1210.	1.9	45
57	Multiple populations of T lymphocytes are distinguished by the level of CD4 and CD8 coexpression and require individual consideration. Journal of Leukocyte Biology, 2006, 79, 4-6.	1.5	39
58	Gamma Interferon Primes Productive Human Immunodeficiency Virus Infection in Astrocytes. Journal of Virology, 2006, 80, 541-544.	1.5	58
59	Activation of Plasmacytoid Dendritic Cells with TLR9 Agonists Initiates Invariant NKT Cell-Mediated Cross-Talk with Myeloid Dendritic Cells. Journal of Immunology, 2006, 177, 1028-1039.	0.4	66
60	Interleukin-7 signalling is sufficient to phenotypically and functionally prime human CD4+ naive T cells. Immunology, 2005, 114, 322-335.	2.0	22
61	Enriching for HIV-infected cells using anti-gp41 antibodies indirectly conjugated to magnetic microbeads. BioTechniques, 2004, 36, 139-147.	0.8	3
62	Assessing thymopoiesis in patients with common variable immunodeficiency as measured by T-cell receptor excision circles. Annals of Allergy, Asthma and Immunology, 2004, 93, 478-484.	0.5	26
63	Dynamics of cytokine expression in HIV productively infected primary CD4+ T cells. Blood, 2004, 103, 4581-4587.	0.6	37
64	Immune Modulation of HIV Replication: Relevance to HIV Immuno- and Neuro-Pathogenesis. Current HIV Research, 2004, 2, 395-401.	0.2	4
65	CD1d-restricted natural killer T cells are potent targets for human immunodeficiency virus infection. Immunology, 2003, 108, 3-9.	2.0	55
66	Granulocyteâ€Macrophage Colony‣timulating Factor Induces Modest Increases in Plasma Human Immunodeficiency Virus (HIV) Type 1 RNA Levels and CD4+Lymphocyte Counts in Patients with Uncontrolled HIV Infection. Journal of Infectious Diseases, 2003, 188, 1804-1814.	1.9	20
67	CD8+ T cells that express CD4 on their surface (CD4dimCD8bright T cells) recognize an antigen-specific target, are detected in vivo, and can be productively infected by T-tropic HIV. Blood, 2003, 102, 2156-2164.	0.6	63
68	Immune Recovery in HIV Disease: Role of the Thymus and T Cell Expansion in Immune Reconstitution Strategies. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 777-786.	1.8	14
69	Interleukin-7–treated naive T cells can be productively infected by T-cell–adapted and primary isolates of human immunodeficiency virus 1. Blood, 2002, 99, 3310-3318.	0.6	75
70	Short Communication: Trophoblasts Are Productively Infected by CD4-Independent Isolate of HIV Type 1. AIDS Research and Human Retroviruses, 2002, 18, 13-17.	0.5	24
71	HIV in the Female Genital Tract: Viral Shedding and Mucosal Immunity. Clinical Obstetrics and Gynecology, 2001, 44, 144-153.	0.6	10
72	T cell receptor excision circle (TREC) content following maximum HIV suppression is equivalent in HIV-infected and HIV-uninfected individuals. Aids, 2001, 15, 1757-1764.	1.0	38

#	Article	IF	CITATIONS
73	A menstrual cycle pattern for cytokine levels exists in HIV-positive women: implication for HIV vaginal and plasma shedding. Aids, 2001, 15, 1535-1543.	1.0	62
74	Upregulation of CD4 on CD8+ T cells: CD4dimCD8bright T cells constitute an activated phenotype of CD8+ T cells. Immunology, 2001, 103, 270-280.	2.0	100
75	Detection of T cell receptor circles (TRECs) as biomarkers for de novo T cell synthesis using a quantitative polymerase chain reaction–enzyme linked immunosorbent assay (PCR–ELISA). Journal of Immunological Methods, 2000, 237, 187-197.	0.6	78
76	Maximum suppression of HIV replication leads to the restoration of HIV-specific responses in early HIV disease. Aids, 2000, 14, 761-770.	1.0	85
77	Evaluation of Thymopoiesis Using T Cell Receptor Excision Circles (TRECs): Differential Correlation between Adult and Pediatric TRECs and Naıl^ve Phenotypes. Clinical Immunology, 2000, 97, 95-101.	1.4	66
78	The Impact of the Ovulatory Cycle on Cytokine Production: Evaluation of Systemic, Cervicovaginal, and Salivary Compartments. Journal of Interferon and Cytokine Research, 2000, 20, 719-724.	0.5	69
79	The human thymus: A new perspective on thymic function, aging, and hiv infection. Clinical Immunology Newsletter, 1999, 19, 65-79.	0.1	8
80	Induction of HIV-1 replication by type 1-like cytokines, interleukin (IL)-12 and IL-15: effect on viral transcriptional activation, cellular proliferation, and endogenous cytokine production. Journal of Clinical Immunology, 1998, 18, 124-131.	2.0	40
81	Rationale for immune-based therapies for HIV-1 infection. Translational Research, 1998, 131, 197-206.	2.4	6
82	Short Communication : Molecular Inhibition of HIV Type 1 by HIV Type 2: Effectiveness in Peripheral Blood Mononuclear Cells. AIDS Research and Human Retroviruses, 1998, 14, 59-64.	0.5	21
83	A potent activator of HIV-1 replication is present in the genital tract of a subset of HIV-1-infected and uninfected women. Aids, 1997, 11, 1319-1326	1.0	43