
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9055443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rescue of F508del-CFTR by elexacaftor/tezacaftor/ivacaftor (Trikafta) in human airway epithelial cells is underestimated due to the presence of ivacaftor. European Respiratory Journal, 2022, 59, 2100671.	3.1	23
2	Engineered fluidic device to achieve multiplexed monitoring of cell cultures with digital holographic microscopy. Optics Express, 2022, 30, 414.	1.7	2
3	Phospholipase C controls chloride-dependent short-circuit current in human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L205-L219.	1.3	1
4	Involvement of CFTR in the pathogenesis of pulmonary arterial hypertension. European Respiratory Journal, 2021, 58, 2000653.	3.1	16
5	Myelinosome Organelles in the Retina of R6/1 Huntington Disease (HD) Mice: Ubiquitous Distribution and Possible Role in Disease Spreading. International Journal of Molecular Sciences, 2021, 22, 12771.	1.8	4
6	Quantitative phase imaging to study transmembrane water fluxes regulated by CFTR and AQP3 in living human airway epithelial CFBE cells and CHO cells. PLoS ONE, 2020, 15, e0233439.	1.1	6
7	Targeting different binding sites in the CFTR structures allows to synergistically potentiate channel activity. European Journal of Medicinal Chemistry, 2020, 190, 112116.	2.6	9
8	Functional and Pharmacological Characterization of the Rare CFTR Mutation W361R. Frontiers in Pharmacology, 2020, 11, 295.	1.6	6
9	CFTR involvement in the pathogenesis of pulmonary arterial hypertension. , 2020, , .		0
10	Short-term consequences of F508del-CFTR thermal instability on CFTR-dependent transepithelial currents in human airway epithelial cells. Scientific Reports, 2019, 9, 13729.	1.6	6
11	Focus on TRP channels in cystic fibrosis. Cell Calcium, 2019, 81, 29-37.	1.1	13
12	Update on the cellular and molecular aspects of cystic fibrosis transmembrane conductance regulator (CFTR) and male fertility. Morphologie, 2019, 103, 4-10.	0.5	18
13	Transalpinecine and Analogues: First Total Synthesis, Stereochemical Revision and Biological Evaluation. European Journal of Organic Chemistry, 2019, 2019, 1830-1834.	1.2	4
14	Modulating the cystic fibrosis transmembrane regulator and the development of new precision drugs. Expert Review of Precision Medicine and Drug Development, 2018, 3, 357-370.	0.4	3
15	Modulation of cellular membrane properties as a potential therapeutic strategy to counter lipointoxication in obstructive pulmonary diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3069-3084.	1.8	12
16	Calumenin contributes to ER-Ca2+ homeostasis in bronchial epithelial cells expressing WT and F508del mutated CFTR and to F508del-CFTR retention. Cell Calcium, 2017, 62, 47-59.	1.1	11
17	In cellulo analyses of the p.Val322Ala mutation on the CFTR protein conformation and activity. Comptes Rendus - Biologies, 2017, 340, 367-371.	0.1	0
18	Development of Automated Patch Clamp Technique to Investigate CFTR Chloride Channel Function. Frontiers in Pharmacology, 2017, 8, 195.	1.6	17

#	Article	IF	CITATIONS
19	The Pig: A Relevant Model for Evaluating the Neutrophil Serine Protease Activities during Acute Pseudomonas aeruginosa Lung Infection. PLoS ONE, 2016, 11, e0168577.	1.1	15
20	Targeting surface voids to counter membrane disorders in lipointoxication-related diseases. Journal of Cell Science, 2016, 129, 2368-81.	1.2	5
21	Myelinosomes act as natural secretory organelles in Sertoli cells to prevent accumulation of aggregate-prone mutant Huntingtin and CFTR. Human Molecular Genetics, 2016, 25, 4170-4185.	1.4	12
22	Pushing the limits of catalytic C–H amination in polyoxygenated cyclobutanes. Organic and Biomolecular Chemistry, 2016, 14, 2780-2796.	1.5	13
23	Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. Journal of Innate Immunity, 2016, 8, 330-349.	1.8	3,509
24	The low PLC-δ1 expression in cystic fibrosis bronchial epithelial cells induces upregulation of TRPV6 channel activity. Cell Calcium, 2015, 57, 38-48.	1.1	19
25	Vasorelaxation induced by dodoneine is mediated by calcium channels blockade and carbonic anhydrase inhibition on vascular smooth muscle cells. Journal of Ethnopharmacology, 2015, 169, 8-17.	2.0	10
26	Predicting CFTR activity with front-runner cystic fibrosis drugs. EBioMedicine, 2015, 2, 100-101.	2.7	1
27	SERCA and PMCA pumps contribute to the deregulation of Ca2+ homeostasis in human CF epithelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 892-903.	1.9	21
28	A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells. European Journal of Pharmacology, 2015, 765, 337-345.	1.7	12
29	Synthetic deoxynojirimycin derivatives bearing a thiolated, fluorinated or unsaturated N-alkyl chain: identification of potent α-glucosidase and trehalase inhibitors as well as F508del-CFTR correctors. Organic and Biomolecular Chemistry, 2015, 13, 10734-10744.	1.5	19
30	Function, pharmacological correction and maturation of new Indian CFTR gene mutations. Journal of Cystic Fibrosis, 2015, 14, 34-41.	0.3	13
31	Involvement of the Cdc42 Pathway in CFTR Post-Translational Turnover and in Its Plasma Membrane Stability in Airway Epithelial Cells. PLoS ONE, 2015, 10, e0118943.	1.1	11
32	The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy. Journal of Cell Science, 2014, 127, 546-56.	1.2	20
33	N- and C-alkylation of seven-membered iminosugars generates potent glucocerebrosidase inhibitors and F508del-CFTR correctors. Organic and Biomolecular Chemistry, 2014, 12, 8977-8996.	1.5	26
34	The hypotensive agent dodoneine inhibits L-type Ca2+ current with negative inotropic effect on rat heart. European Journal of Pharmacology, 2014, 728, 119-127.	1.7	18
35	Bronchorelaxation of the human bronchi by CFTR activators. Pulmonary Pharmacology and Therapeutics, 2014, 27, 38-43.	1.1	19
36	ANO1 contributes to Angiotensin-II-activated Ca2+-dependent Clâ^' current in human atrial fibroblasts. Journal of Molecular and Cellular Cardiology, 2014, 68, 12-19.	0.9	15

#	Article	IF	CITATIONS
37	A new 9-alkyladenine-cyclic methylglyoxal diadduct activates wt- and F508del-cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo. European Journal of Medicinal Chemistry, 2014, 83, 455-465.	2.6	3
38	Roscovitine is a proteostasis regulator that corrects the trafficking defect of <scp>F</scp> 508delâ€ <scp>CFTR</scp> by a <scp>CDK</scp> â€independent mechanism. British Journal of Pharmacology, 2014, 171, 4831-4849.	2.7	26
39	Searching for Combinations of Small-Molecule Correctors to Restore F508del–Cystic Fibrosis Transmembrane Conductance Regulator Function and Processing. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 624-634.	1.3	22
40	Improvement of Chloride Transport Defect by Gonadotropin-Releasing Hormone (GnRH) in Cystic Fibrosis Epithelial Cells. PLoS ONE, 2014, 9, e88964.	1.1	7
41	Cystic Fibrosis Bronchial Epithelial Cells Are Lipointoxicated by Membrane Palmitate Accumulation. PLoS ONE, 2014, 9, e89044.	1.1	7
42	Rescue of Functional CFTR Channels in Cystic Fibrosis: A Dramatic Multivalent Effect Using Iminosugar Clusterâ€Based Correctors. ChemBioChem, 2013, 14, 2050-2058.	1.3	39
43	Saturated Fatty Acids Alter the Late Secretory Pathway by Modulating Membrane Properties. Traffic, 2013, 14, 1228-1241.	1.3	25
44	Discovery of novel potent <scp>ΔF</scp> 508― <scp>CFTR</scp> correctors that target the nucleotide binding domain. EMBO Molecular Medicine, 2013, 5, 1484-1501.	3.3	77
45	Effect of VX-770 (Ivacaftor) and OAG on Ca2+ influx and CFTR activity in G551D and F508del-CFTR expressing cells. Journal of Cystic Fibrosis, 2013, 12, 584-591.	0.3	14
46	Missense Mutations in SLC26A8, Encoding a Sperm-Specific Activator of CFTR, Are Associated with Human Asthenozoospermia. American Journal of Human Genetics, 2013, 92, 760-766.	2.6	92
47	<i>C</i> -Branched Iminosugars: α-Glucosidase Inhibition by Enantiomers of isoDMDP, isoDGDP, and isoDAB– <scp>I</scp> -isoDMDP Compared to Miglitol and Miglustat. Journal of Organic Chemistry, 2013, 78, 7380-7397.	1.7	44
48	CFTR: Effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel. Journal of Cystic Fibrosis, 2013, 12, 737-745.	0.3	21
49	Strategies to circumvent the CFTR defect in cystic fibrosis. Frontiers in Pharmacology, 2013, 4, 108.	1.6	1
50	Deficit of osteoprotegerin release by osteoblasts from a patient with cystic fibrosis. European Respiratory Journal, 2012, 39, 780-781.	3.1	9
51	The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation. Human Molecular Genetics, 2012, 21, 1287-1298.	1.4	70
52	<i>CFTR</i> mutation combinations producing frequent complex alleles with different clinical and functional outcomes. Human Mutation, 2012, 33, 1557-1565.	1.1	19
53	Orphan Missense Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Molecular Diagnostics, 2011, 13, 520-527.	1.2	3
54	Transient Receptor Potential Canonical Channel 6 Links Ca ²⁺ Mishandling to Cystic Fibrosis Transmembrane Conductance Regulator Channel Dysfunction in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 83-90.	1.4	55

#	Article	IF	CITATIONS
55	Effects of CFTR gene silencing by siRNA or the luminal application of a CFTR activator on fluid secretion from guinea-pig pancreatic duct cells. Biochemical and Biophysical Research Communications, 2011, 410, 904-909.	1.0	5
56	From the vasodilator and hypotensive effects of an extract fraction from Agelanthus dodoneifolius (DC) Danser (Loranthaceae) to the active compound dodoneine. Journal of Ethnopharmacology, 2011, 133, 345-352.	2.0	10
57	Selection of the biological activity of DNJ neoglycoconjugates through click length variation of the side chain. Organic and Biomolecular Chemistry, 2011, 9, 5373.	1.5	42
58	Pharmacological therapy for cystic fibrosis: From bench to bedside. Journal of Cystic Fibrosis, 2011, 10, S129-S145.	0.3	58
59	Stimulation of wild-type, F508del- and G551D-CFTR chloride channels by non-toxic modified pyrrolo[2,3-b]pyrazine derivatives. Frontiers in Pharmacology, 2011, 2, 48.	1.6	7
60	CFTR and Ca2+ signaling in cystic fibrosis. Frontiers in Pharmacology, 2011, 2, 67.	1.6	41
61	An expeditious access to 5-pyrimidinol derivatives from cyclic methylglyoxal diadducts, formation of argpyrimidines under physiological conditions and discovery of new CFTR inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 1935-1941.	2.6	5
62	4-C-Me-DAB and 4-C-Me-LAB—enantiomeric alkyl-branched pyrrolidine iminosugars—are specific and potent α-glucosidase inhibitors; acetone as the sole protecting group. Tetrahedron Letters, 2011, 52, 219-223.	0.7	35
63	CFTR channels and adenosine triphosphate release: the impossible rendez-vous revisited in skeletal muscle. Journal of Physiology, 2010, 588, 4605-4606.	1.3	11
64	Identification of a novel water-soluble activator of wild-type and F508del CFTR: GPact-11a. European Respiratory Journal, 2010, 36, 311-322.	3.1	9
65	Adenovirus 5–Fiber 35 Chimeric Vector Mediates Efficient Apical Correction of the Cystic Fibrosis Transmembrane Conductance Regulator Defect in Cystic Fibrosis Primary Airway Epithelia. Human Gene Therapy, 2010, 21, 251-269.	1.4	20
66	C Terminus of Nucleotide Binding Domain 1 Contains Critical Features for Cystic Fibrosis Transmembrane Conductance Regulator Trafficking and Activation. Journal of Biological Chemistry, 2010, 285, 22132-22140.	1.6	14
67	Understanding nucleotide binding and CFTR ion channel gating: how many cycles?. Expert Review of Respiratory Medicine, 2010, 4, 451-454.	1.0	Ο
68	Cystic Fibrosis Transmembrane Conductance Regulator Modulators for Personalized Drug Treatment of Cystic Fibrosis. Drugs, 2010, 70, 241-259.	4.9	39
69	Cystic fibrosis and diabetes: isoLAB and isoDAB, enantiomeric carbon-branched pyrrolidine iminosugars. Tetrahedron Letters, 2010, 51, 4170-4174.	0.7	42
70	Rescue of Functional F508del Cystic Fibrosis Transmembrane Conductance Regulator by Vasoactive Intestinal Peptide in the Human Nasal Epithelial Cell Line JME/CF15. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 2-13.	1.3	17
71	A Cystic Fibrosis Respiratory Epithelial Cell Chronically Treated by Miglustat Acquires a Non–Cystic Fibrosis–Like Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 217-225.	1.4	54
72	Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells. Mitochondrion, 2009, 9, 232-241.	1.6	50

#	Article	IF	CITATIONS
73	Angiotensin li Activates Calcium-Dependent Cl- Channels In Human Cardiac Fibroblasts. Biophysical Journal, 2009, 96, 475a.	0.2	0
74	9â€₽henanthrol inhibits human TRPM4 but not TRPM5 cationic channels. British Journal of Pharmacology, 2008, 153, 1697-1705.	2.7	135
75	Endosomal SNARE proteins regulate CFTR activity and trafficking in epithelial cells. Experimental Cell Research, 2008, 314, 2199-2211.	1.2	24
76	Transient receptor potential vanilloid 1 (TRPV1) channels in cultured rat Sertoli cells regulate an acid sensing chloride channel. Biochemical Pharmacology, 2008, 75, 476-483.	2.0	23
77	Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR. Cell Calcium, 2008, 43, 175-183.	1.1	65
78	Guanabenz, an α2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells. European Journal of Pharmacology, 2008, 592, 33-40.	1.7	15
79	Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells. Respiratory Research, 2008, 9, 70.	1.4	32
80	Stimulation of salivary secretion in vivo by CFTR potentiators in Cftr+/+ and Cftrâ^'/â^' mice. Journal of Cystic Fibrosis, 2008, 7, 128-133.	0.3	15
81	Anti-inflammatory effect of miglustat in bronchial epithelial cells. Journal of Cystic Fibrosis, 2008, 7, 555-565.	0.3	45
82	Parallel Improvement of Sodium and Chloride Transport Defects by Miglustat (<i>n</i> -Butyldeoxynojyrimicin) in Cystic Fibrosis Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 1016-1023.	1.3	45
83	Proteasome-Dependent Pharmacological Rescue of Cystic Fibrosis Transmembrane Conductance Regulator Revealed by Mutation of Clycine 622. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 89-99.	1.3	24
84	Expression and function of cystic fibrosis transmembrane conductance regulator in rat intrapulmonary arteries. European Respiratory Journal, 2007, 30, 857-864.	3.1	37
85	NHE-RF1 protein rescues î"F508-CFTR function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1085-L1094.	1.3	22
86	Cellular Localization and Activity of Ad-Delivered GFP-CFTR in Airway Epithelial and Tracheal Cells. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 631-639.	1.4	19
87	MPB-07 Reduces the Inflammatory Response toPseudomonas aeruginosain Cystic Fibrosis Bronchial Cells. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 615-624.	1.4	39
88	CFTR inhibition by glibenclamide requires a positive charge in cytoplasmic loop three. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2438-2446.	1.4	17
89	Structure Elucidation of a Dihydropyranone from <i>Tapinanthus dodoneifolius</i> . Journal of Natural Products, 2007, 70, 2006-2009.	1.5	28
90	Discovery of α-Aminoazaheterocycle-Methylglyoxal Adducts as a New Class of High-Affinity Inhibitors of Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 1023-1035.	1.3	16

#	Article	IF	CITATIONS
91	Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation. Respiratory Research, 2006, 7, 113.	1.4	54
92	Rescue of functional delF508-CFTR channels in cystic fibrosis epithelial cells by the α-glucosidase inhibitor miglustat. FEBS Letters, 2006, 580, 2081-2086.	1.3	123
93	Pharmacological profile of inhibition of the chloride channels activated by extracellular acid in cultured rat Sertoli cells. Reproduction, Nutrition, Development, 2006, 46, 241-255.	1.9	13
94	Maintaining Low Ca2+ Level in the Endoplasmic Reticulum Restores Abnormal Endogenous F508del-CFTR Trafficking in Airway Epithelial Cells. Traffic, 2006, 7, 562-573.	1.3	63
95	The Glycine Residues G551 and G1349 within the ATP-Binding Cassette Signature Motifs Play Critical Roles in the Activation and Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator Channels by Phloxine B. Journal of Membrane Biology, 2006, 208, 203-212.	1.0	10
96	On the Discovery and Development of CFTR Chloride Channel Activators. Current Pharmaceutical Design, 2006, 12, 471-484.	0.9	26
97	Discovery of Pyrrolo[2,3-b]pyrazines Derivatives as Submicromolar Affinity Activators of Wild Type, G551D, and F508del Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 349-359.	1.3	39
98	Rescue of ΔF508-CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) by Curcumin: Involvement of the Keratin 18 Network. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 500-505.	1.3	60
99	Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Clâ^'transport of mouse aortic smooth muscle cells. Journal of Physiology, 2005, 568, 483-495.	1.3	69
100	Sildenafil (Viagra) corrects ÂF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis. Thorax, 2005, 60, 55-59.	2.7	81
101	Chronic exposure to EGF affects trafficking and function of ENaC channel in cystic fibrosis cells. Biochemical and Biophysical Research Communications, 2005, 331, 503-511.	1.0	12
102	Pharmacological interventions for the correction of ion transport defect in cystic fibrosis. Expert Opinion on Therapeutic Patents, 2004, 14, 1465-1483.	2.4	5
103	Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Channel by β-Adrenergic Agonists and Vasoactive Intestinal Peptide in Rat Smooth Muscle Cells and Its Role in Vasorelaxation. Journal of Biological Chemistry, 2004, 279, 21160-21168.	1.6	50
104	Syntaxin 8 impairs trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) and inhibits its channel activity. Journal of Cell Science, 2004, 117, 1923-1935.	1.2	46
105	General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels. British Journal of Pharmacology, 2004, 141, 905-914.	2.7	10
106	The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein. Biochemical Pharmacology, 2004, 67, 2187-2196.	2.0	37
107	Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion. British Journal of Pharmacology, 2004, 141, 698-708.	2.7	46
108	Synthesis, SAR, Crystal Structure, and Biological Evaluation of Benzoquinoliziniums as Activators of Wild-Type and Mutant Cystic Fibrosis Transmembrane Conductance Regulator Channels. Journal of Medicinal Chemistry, 2004, 47, 962-972.	2.9	51

#	Article	IF	CITATIONS
109	Determination of CFTR chloride channel activity and pharmacology using radiotracer flux methods. Journal of Cystic Fibrosis, 2004, 3, 119-121.	0.3	61
110	Comparative Pharmacology of the Activity of Wild-type and G551D Mutated CFTR Chloride Channel: Effect of the Benzimidazolone Derivative NS004. Journal of Membrane Biology, 2003, 194, 109-117.	1.0	18
111	Inhibition of ATP-sensitive K+ channels by substituted benzo[c]quinolizinium CFTR activators. Biochemical Pharmacology, 2003, 66, 425-430.	2.0	10
112	Benzo(c)quinolizinium drugs inhibit degradation of ΔF508-CFTR cytoplasmic domain. Biochemical and Biophysical Research Communications, 2003, 300, 524-530.	1.0	26
113	A Novel Voltage-dependent Chloride Current Activated by Extracellular Acidic pH in Cultured Rat Sertoli Cells. Journal of Biological Chemistry, 2003, 278, 19230-19236.	1.6	62
114	Cloning and expression of two plasma membrane aquaporins expressed during the ripening of grape berry. Functional Plant Biology, 2003, 30, 621.	1.1	53
115	The Cystic Fibrosis Mutation G551D Alters the Non-Michaelis-Menten Behavior of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel and Abolishes the Inhibitory Genistein Binding Site. Journal of Biological Chemistry, 2002, 277, 35999-36004.	1.6	32
116	Genistein Modifies the Activation Kinetics and Magnitude of Phosphorylated Wild-Type and G551D-CFTR Chloride Currents. Journal of Membrane Biology, 2002, 188, 175-182.	1.0	8
117	First cloning and functional characterization of a melatonin receptor in fish brain: a novel one?. Journal of Pineal Research, 2002, 32, 74-84.	3.4	39
118	Correction of G551D-CFTR transport defect in epithelial monolayers by genistein but not by CPX or MPB-07. British Journal of Pharmacology, 2002, 137, 504-512.	2.7	52
119	Activation of G551D CFTR channel with MPB-91: regulation by ATPase activity and phosphorylation. American Journal of Physiology - Cell Physiology, 2001, 281, C1657-C1666.	2.1	44
120	Tat1, a Novel Sulfate Transporter Specifically Expressed in Human Male Germ Cells and Potentially Linked to RhoGTPase Signaling. Journal of Biological Chemistry, 2001, 276, 20309-20315.	1.6	84
121	Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells. American Journal of Physiology - Cell Physiology, 2000, 279, C1925-C1937.	2.1	31
122	A Cystic Fibrosis Tracheal Gland Cell Line, CF-KM4. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 684-691.	1.4	41
123	Acute Effects of Adenosine Triphosphates, Cyclic 3′,5′-Adenosine Monophosphates, and Follicle-Stimulating Hormone on Cytosolic Calcium Level in Cultured Immature Rat Sertoli Cells. Biology of Reproduction, 1999, 61, 343-352.	1.2	30
124	Development of Substituted Benzo[c]quinolizinium Compounds as Novel Activators of the Cystic Fibrosis Chloride Channel. Journal of Biological Chemistry, 1999, 274, 27415-27425.	1.6	102
125	Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Confers Glibenclamide Sensitivity to Outwardly Rectifying Chloride Channel (ORCC) in Hi-5 Insect Cells. Journal of Membrane Biology, 1999, 168, 229-239.	1.0	20
126	Les canaux chlorure, ou comment un poisson électrique éclaire la pathologie humaine Medecine/Sciences, 1999, 15, 1003.	0.0	1

#	Article	IF	CITATIONS
127	Structural basis for specificity and potency of xanthine derivatives as activators of the CFTR chloride channel. British Journal of Pharmacology, 1998, 123, 683-693.	2.7	56
128	ABC1, an ATP Binding Cassette Transporter Required for Phagocytosis of Apoptotic Cells, Generates a Regulated Anion Flux after Expression in Xenopus laevis Oocytes. Journal of Biological Chemistry, 1997, 272, 2695-2699.	1.6	123
129	Interleukin-1β Secretion Is Impaired by Inhibitors of the Atp Binding Cassette Transporter, ABC1. Blood, 1997, 90, 2911-2915.	0.6	207
130	Ionic channel rundown in excised membrane patches. BBA - Biomembranes, 1996, 1286, 53-63.	7.9	34
131	cAMP- and Ca2+-independent Activation of Cystic Fibrosis Transmembrane Conductance Regulator Channels by Phenylimidazothiazole Drugs. Journal of Biological Chemistry, 1996, 271, 16171-16179.	1.6	49
132	The expression of carbonic anhydrases II and IV in the human pancreatic cancer cell line (Capan 1) is associated with bicarbonate ion channels. Biology of the Cell, 1994, 81, 131-141.	0.7	38
133	Phosphatase inhibitors activate normal and defective CFTR chloride channels Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9160-9164.	3.3	156
134	Phosphorylation-regulated low-conductance Cl? channels in a human pancreatic duct cell line. Pflugers Archiv European Journal of Physiology, 1993, 425, 1-8.	1.3	25
135	Characterization of cAMP dependent CFTR-chloride channels in human trache gland cells. FEBS Letters, 1993, 321, 73-78.	1.3	25
136	Possible regulation of CFTR-chloride channels by membrane-bound phosphatases in pancreatic duct cells. FEBS Letters, 1993, 327, 337-342.	1.3	55
137	Anion channels in a human pancreatic cancer cell line (Capan-1) of ductal origin. Pflugers Archiv European Journal of Physiology, 1992, 420, 46-53.	1.3	36