Xiang Liu, å^~å•

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9055209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Explaining variation in productivity requires intraspecific variability in plant height among communities. Journal of Plant Ecology, 2022, 15, 310-319.	1.2	1
2	CO ₂ treatment enables non-hazardous, reliable, and efficacious recovery of spent Li(Ni _{0.5} Co _{0.2} Mn _{0.3})O ₂ cathodes. Green Chemistry, 2022, 24, 779-789.	4.6	22
3	Effects of Environmental Factors on the Changes in MODIS NPP along DEM in Global Terrestrial Ecosystems over the Last Two Decades. Remote Sensing, 2022, 14, 713.	1.8	9
4	Direct Regeneration of Spent Lithium Iron Phosphate via a Low-Temperature Molten Salt Process Coupled with a Reductive Environment. Industrial & Engineering Chemistry Research, 2022, 61, 3831-3839.	1.8	31
5	Functional traits explain the consistent resistance of biodiversity to plant invasion under nitrogen enrichment. Ecology Letters, 2022, 25, 778-789.	3.0	38
6	Intra―and interspecific variability of specific leaf area mitigate the reduction of community stability in response to warming and nitrogen addition. Oikos, 2022, 2022, .	1.2	5
7	Nitrogen deposition magnifies destabilizing effects of plant functional group loss. Science of the Total Environment, 2022, 835, 155419.	3.9	1
8	Temporal and Spatial Dynamics of Carbon Storage in Qinghai Grasslands. Agronomy, 2022, 12, 1201.	1.3	2
9	Nitrogen addition altered the plant-arbuscular mycorrhizal fungi network through reducing redundant interactions in an alpine meadow. Soil Biology and Biochemistry, 2022, 171, 108727.	4.2	7
10	Changes in soil carbon and nitrogen stocks following degradation of alpine grasslands on the <scp>Qinghaiâ€Tibetan</scp> Plateau: A metaâ€analysis. Land Degradation and Development, 2021, 32, 1262-1273.	1.8	25
11	Plant diversity promotes soil fungal pathogen richness under fertilization in an alpine meadow. Journal of Plant Ecology, 2021, 14, 323-336.	1.2	13
12	Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil, 2021, 458, 93-103.	1.8	36
13	The allometry of plant height explains species loss under nitrogen addition. Ecology Letters, 2021, 24, 553-562.	3.0	32
14	Host plant environmental filtering drives foliar fungal community assembly in symptomatic leaves. Oecologia, 2021, 195, 737-749.	0.9	4
15	Monitoring Vegetation Greenness in Response to Climate Variation along the Elevation Gradient in the Three-River Source Region of China. ISPRS International Journal of Geo-Information, 2021, 10, 193.	1.4	9
16	Contrasting effects of mammal grazing on foliar fungal diseases: patterns and potential mechanisms. New Phytologist, 2021, 232, 345-355.	3.5	8
17	Nitrogen Addition and Arbuscular Mycorrhizal Fungi Beta Diversity: Patterns and Mechanisms. Frontiers in Environmental Science, 2021, 9, .	1.5	3
18	Investment in science can mitigate the negative impacts of land use on declining primate populations. American Journal of Primatology, 2021, 83, e23302.	0.8	5

Xiang Liu, Å~~Å•́

#	Article	IF	CITATIONS
19	Rocket launching activities are associated with reduced insect species richness and abundance in two types of tropical plantations around the Wenchang Satellite Launch Center, southern China. Ecological Indicators, 2021, 127, 107751.	2.6	1
20	Greening of the Qinghai–Tibet Plateau and Its Response to Climate Variations along Elevation Gradients. Remote Sensing, 2021, 13, 3712.	1.8	23
21	Foliar fungal diseases respond differently to nitrogen and phosphorus additions in Tibetan alpine meadows. Ecological Research, 2020, 35, 162-169.	0.7	11
22	Ant assemblage composition explains high predation pressure on artificial caterpillars during early night. Ecological Entomology, 2020, 45, 547-554.	1.1	11
23	Species distribution patterns and the scale of host interactions quantitatively but not qualitatively affect the diversity–disease relationship. Ecological Modelling, 2020, 435, 109268.	1.2	0
24	Asynchrony among species and functional groups and temporal stability under perturbations: Patterns and consequences. Journal of Ecology, 2020, 108, 2038-2046.	1.9	22
25	Shifts in plant community composition weaken the negative effect of nitrogen addition on community-level arbuscular mycorrhizal fungi colonization. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200483.	1.2	14
26	Does Grazing Exclusion Improve Soil Carbon and Nitrogen Stocks in Alpine Grasslands on the Qinghai-Tibetan Plateau? A Meta-Analysis. Sustainability, 2020, 12, 977.	1.6	13
27	Limited inorganic N niche partitioning by nine alpine plant species after long-term nitrogen addition. Science of the Total Environment, 2020, 718, 137270.	3.9	16
28	Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos, 2020, 129, 457-465.	1.2	47
29	Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos, 2020, 129, 1185-1195.	1.2	32
30	Indirect effect of nitrogen enrichment modified invertebrate herbivory through altering plant community composition in an alpine meadow. Journal of Plant Ecology, 2019, 12, 693-702.	1.2	6
31	Rare and phylogenetically distinct plant species exhibit less diverse rootâ€associated pathogen communities. Journal of Ecology, 2019, 107, 1226-1237.	1.9	11
32	Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. New Phytologist, 2019, 221, 1574-1584.	3.5	42
33	Random species loss underestimates dilution effects of host diversity on foliar fungal diseases under fertilization. Ecology and Evolution, 2018, 8, 1705-1713.	0.8	26
34	Species decline under nitrogen fertilization increases community-level competence of fungal diseases. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162621.	1.2	64
35	Functional dissimilarity, not phylogenetic relatedness, determines interspecific interactions among plants in the Tibetan alpine meadows. Oikos, 2017, 126, 381-388.	1.2	16
36	Warming and fertilization alter the dilution effect of host diversity on disease severity. Ecology, 2016, 97, 1680-1689.	1.5	76