Aleksandr B Stefaniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054982/publications.pdf

Version: 2024-02-01

82 papers

2,725 citations

30 h-index 49 g-index

83 all docs 83 docs citations

83 times ranked 2942 citing authors

#	Article	IF	CITATIONS
1	Towards sustainable additive manufacturing: The need for awareness of particle and vapor releases during polymer recycling, making filament, and fused filament fabrication 3-D printing. Resources, Conservation and Recycling, 2022, 176, 105911.	10.8	20
2	Influence of E-Liquid Humectants, Nicotine, and Flavorings on Aerosol Particle Size Distribution and Implications for Modeling Respiratory Deposition. Frontiers in Public Health, 2022, 10, 782068.	2.7	13
3	Evaluation of Pulmonary Effects of 3-D Printer Emissions From Acrylonitrile Butadiene Styrene Using an Air-Liquid Interface Model of Primary Normal Human-Derived Bronchial Epithelial Cells. International Journal of Toxicology, 2022, 41, 312-328.	1.2	8
4	Comparison of product safety data sheet ingredient lists with skin irritants and sensitizers present in a convenience sample of light-curing resins used in additive manufacturing. Regulatory Toxicology and Pharmacology, 2022, 133, 105198.	2.7	4
5	Identification of effective control technologies for additive manufacturing. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2022, 25, 211-249.	6.5	2
6	Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases. Journal of Chemical Health and Safety, 2021, 28, 268-278.	2.1	8
7	Particle transfer and adherence to human skin compared with cotton glove and pre-moistened polyvinyl alcohol exposure sampling substrates. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 585-598.	1.7	O
8	Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part I: Real-Time Particulate and Gas-Phase Emissions. Journal of Chemical Health and Safety, 2021, 28, 190-200.	2.1	8
9	Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Samp; Exposures. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2021, 24, 173-222.	6.5	23
10	Toxicology of flavoring- and cannabis-containing e-liquids used in electronic delivery systems. , 2021, 224, 107838.		43
11	Use of 3-Dimensional Printers in Educational Settings: The Need for Awareness of the Effects of Printer Temperature and Filament Type on Contaminant Releases. Journal of Chemical Health and Safety, 2021, 28, 444-456.	2.1	9
12	Modeled Respiratory Tract Deposition of Aerosolized Oil Diluents Used in î"9-THC-Based Electronic Cigarette Liquid Products. Frontiers in Public Health, 2021, 9, 744166.	2.7	11
13	Effect of Puffing Behavior on Particle Size Distributions and Respiratory Depositions From Pod-Style Electronic Cigarette, or Vaping, Products. Frontiers in Public Health, 2021, 9, 750402.	2.7	10
14	Chemical Emissions From Heated Vitamin E Acetateâ€"Insights to Respiratory Risks From Electronic Cigarette Liquid Oil Diluents Used in the Aerosolization of 1"9-THC-Containing Products. Frontiers in Public Health, 2021, 9, 765168.	2.7	3
15	Pulmonary and systemic toxicity in rats following inhalation exposure of 3-D printer emissions from acrylonitrile butadiene styrene (ABS) filament. Inhalation Toxicology, 2020, 32, 403-418.	1.6	31
16	Associations of Metrics of Peak Inhalation Exposure and Skin Exposure Indices With Beryllium Sensitization at a Beryllium Manufacturing Facility. Annals of Work Exposures and Health, 2019, 63, 856-869.	1.4	7
17	Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) filaments three-dimensional (3-D) printer emissions-induced cell toxicity. Toxicology Letters, 2019, 317, 1-12.	0.8	56
18	Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers. Journal of Occupational and Environmental Hygiene, 2019, 16, 519-531.	1.0	32

#	Article	IF	CITATIONS
19	Potential occupational hazards of additive manufacturing. Journal of Occupational and Environmental Hygiene, 2019, 16, 321-328.	1.0	54
20	Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines. Safety and Health at Work, 2019, 10, 229-236.	0.6	37
21	Particle and organic vapor emissions from children's 3-D pen and 3-D printer toys. Inhalation Toxicology, 2019, 31, 432-445.	1.6	21
22	Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printers. Journal of Chemical Health and Safety, 2019, 26, 19-30.	2.1	45
23	Exposures during industrial 3-D printing and post-processing tasks. Rapid Prototyping Journal, 2018, 24, 865-871.	3.2	39
24	Three-dimensional printing with nano-enabled filaments releases polymer particles containing carbon nanotubes into air. Indoor Air, 2018, 28, 840-851.	4.3	40
25	Measurement of Skin Surface pH. Current Problems in Dermatology, 2018, 54, 19-25.	0.7	24
26	Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer. Journal of Occupational and Environmental Hygiene, 2017, 14, 540-550.	1.0	87
27	Application of the ICRP respiratory tract model to estimate pulmonary retention of industrially sampled indium-containing dusts. Inhalation Toxicology, 2017, 29, 169-178.	1.6	8
28	Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction. Toxicology and Applied Pharmacology, 2017, 335, 1-5.	2.8	61
29	<i>In Vivo</i> i> Toxicity Assessment of Occupational Components of the Carbon Nanotube Life Cycle To Provide Context to Potential Health Effects. ACS Nano, 2017, 11, 8849-8863.	14.6	44
30	Biometrology Guidelines for the In Vivo Assessment of Skin Surface pH in Nonclinical Settings. , 2017, , 925-932.		1
31	Biometrology Guidelines for the In Vivo Assessment of Transepidermal Water Loss and Skin Hydration in Nonclinical Settings. , 2017, , 933-943.		3
32	Respirable indium exposures, plasma indium, and respiratory health among indiumâ€ŧin oxide (ITO) workers. American Journal of Industrial Medicine, 2016, 59, 522-531.	2.1	43
33	Emission of particulate matter from a desktop three-dimensional (3D) printer. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 453-465.	2.3	115
34	Characterization of silver particles in the stratum corneum of healthy subjects and atopic dermatitis patients dermally exposed to a silver-containing garment. Nanotoxicology, 2016, 10, 1480-1491.	3.0	24
35	Taking stock of the occupational safety and health challenges of nanotechnology: 2000–2015. Journal of Nanoparticle Research, 2016, 18, 159.	1.9	25
36	Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures. International Journal of Hygiene and Environmental Health, 2015, 218, 345-357.	4.3	113

#	Article	IF	Citations
37	Comparative dissolution of electrospun Al ₂ O ₃ nanofibres in artificial human lung fluids. Environmental Science: Nano, 2015, 2, 251-261.	4.3	15
38	Biometrology Guidelines for the In Vivo Assessment of Transepidermal Water Loss and Skin Hydration in Nonclinical Settings. , 2015, , 1-11.		0
39	Lung biodurability and free radical production of cellulose nanomaterials. Inhalation Toxicology, 2014, 26, 733-749.	1.6	52
40	Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities. Journal of Occupational and Environmental Hygiene, 2014, 11, 781-792.	1.0	5
41	Dermal exposure potential from textiles that contain silver nanoparticles. International Journal of Occupational and Environmental Health, 2014, 20, 220-234.	1.2	55
42	Cytotoxicity and Characterization of Particles Collected From an Indium–Tin Oxide Production Facility. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 1193-1209.	2.3	30
43	Exposure to volatile organic compounds in healthcare settings. Occupational and Environmental Medicine, 2014, 71, 642-650.	2.8	36
44	Dissolution of the metal sensitizers Ni, Be, Cr in artificial sweat to improve estimates of dermal bioaccessibility. Environmental Sciences: Processes and Impacts, 2014, 16, 341.	3.5	23
45	"Real-world―precision, bias, and between-laboratory variation for surface area measurement of a titanium dioxide nanomaterial in powder form. Journal of Nanoparticle Research, 2013, 15, 1742.	1.9	37
46	International guidelines for the <i>in vivo</i> assessment of skin properties in nonâ€elinical settings: Part 2. transepidermal water loss and skin hydration. Skin Research and Technology, 2013, 19, 265-278.	1.6	177
47	Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities. Nanotoxicology, 2013, 7, 1325-1337.	3.0	98
48	International guidelines for the in vivo assessment of skin properties in nonâ€clinical settings: part 1. pH. Skin Research and Technology, 2013, 19, 59-68.	1.6	50
49	Release of Beryllium Into Artificial Airway Epithelial Lining Fluid. Archives of Environmental and Occupational Health, 2012, 67, 219-228.	1.4	6
50	Release of beryllium from mineral ores in artificial lung and skin surface fluids. Environmental Geochemistry and Health, 2012, 34, 313-322.	3.4	5
51	Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid. Chemosphere, 2011, 83, 1181-1187.	8.2	13
52	Measuring surface area of airborne titanium dioxide powder agglomerates: relationships between gas adsorption, diffusion and mobility-based methods. Journal of Nanoparticle Research, 2011, 13, 7029-7039.	1.9	14
53	Comment on Strupp Papers on Beryllium Metal Toxicity. Annals of Occupational Hygiene, 2011, 55, 556-7; author reply 558-9.	1.9	2
54	Measurement of airborne nanoparticle surface area using a filter-based gas adsorption method for inhalation toxicology experiments. Nanotoxicology, 2011, 5, 687-699.	3.0	9

#	Article	IF	CITATIONS
55	Influence of artificial gastric juice composition on bioaccessibility of cobalt- and tungsten-containing powders. International Journal of Hygiene and Environmental Health, 2010, 213, 107-115.	4.3	24
56	Persistence of tungsten oxide particle/fiber mixtures in artificial human lung fluids. Particle and Fibre Toxicology, 2010, 7, 38.	6.2	19
57	Formulation and stability of a novel artificial sebum under conditions of storage and use. International Journal of Cosmetic Science, 2010, 32, 347-355.	2.6	40
58	Characteristics of Beryllium Exposure to Small Particles at a Beryllium Production Facility. Annals of Occupational Hygiene, 2010, 55, 70-85.	1.9	14
59	Release of Beryllium from Beryllium-Containing Materials in Artificial Skin Surface Film Liquids. Annals of Occupational Hygiene, 2010, 55, 57-69.	1.9	14
60	Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicology in Vitro, 2010, 24, 1790-1796.	2.4	211
61	Dissolution of cemented carbide powders in artificial sweat: implications for cobalt sensitization and contact dermatitis. Journal of Environmental Monitoring, 2010, 12, 1815.	2.1	11
62	A Reconsideration of Acute Beryllium Disease. Environmental Health Perspectives, 2009, 117, 1250-1256.	6.0	56
63	Comparison of Free Radical Generation by Pre- and Post-Sintered Cemented Carbide Particles. Journal of Occupational and Environmental Hygiene, 2009, 7, 23-34.	1.0	15
64	Characterization of exposures among cemented tungsten carbide workers. Part II: Assessment of surface contamination and skin exposures to cobalt, chromium and nickel. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 423-434.	3.9	30
65	Characterization of exposures among cemented tungsten carbide workers. Part I: Size-fractionated exposures to airborne cobalt and tungsten particles. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 475-491.	3.9	36
66	Dissolution and reactive oxygen species generation of inhaled cemented tungsten carbide particles in artificial human lung fluids. Journal of Physics: Conference Series, 2009, 151, 012045.	0.4	6
67	Certification of Beryllium Mass Fraction in SRM 1877 Beryllium Oxide Powder Using High-Performance Inductively Coupled Plasma Optical Emission Spectrometry with Exact Matching. Analytical Chemistry, 2009, 81, 2208-2217.	6.5	10
68	Tungsten oxide fiber dissolution and persistence in artificial human lung fluids. Journal of Physics: Conference Series, 2009, 151, 012013.	0.4	1
69	Size-selective poorly soluble particulate reference materials for evaluation of quantitative analytical methods. Analytical and Bioanalytical Chemistry, 2008, 391, 2071-2077.	3.7	10
70	Physicochemical Characteristics of Aerosol Particles Generated During the Milling of Beryllium Silicate Ores: Implications for Risk Assessment. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1468-1481.	2.3	17
71	Differences in estimates of size distribution of beryllium powder materials using phase contrast microscopy, scanning electron microscopy, and liquid suspension counter techniques. Particle and Fibre Toxicology, 2007, 4, 3.	6.2	7
72	A theoretical framework for evaluating analytical digestion methods for poorly soluble particulate beryllium. Analytical and Bioanalytical Chemistry, 2007, 387, 2411-2417.	3.7	9

#	Article	IF	CITATION
73	Characteristics of Dusts Encountered during the Production of Cemented Tungsten Carbides. Industrial Health, 2007, 45, 793-803.	1.0	20
74	Trace-level beryllium analysis in the laboratory and in the field: state of the art, challenges and opportunities. Journal of Environmental Monitoring, 2006, 8, 605.	2.1	25
75	Exposure Pathway Assessment at a Copper–Beryllium Alloy Facility. Annals of Occupational Hygiene, 2006, 51, 67-80.	1.9	43
76	Differences in dissolution behavior in a phagolysosomal simulant fluid for single-constituent and multi-constituent materials associated with beryllium sensitization and chronic beryllium disease. Toxicology in Vitro, 2006, 20, 82-95.	2.4	32
77	Dissolution of materials in artificial skin surface film liquids. Toxicology in Vitro, 2006, 20, 1265-1283.	2.4	109
78	Beryllium exposure: dermal and immunological considerations. International Archives of Occupational and Environmental Health, 2006, 79, 161-164.	2.3	51
79	BIOAVAILABILITY OF BERYLLIUM OXIDE PARTICLES: AN IN VITRO STUDY IN THE MURINE J774A.1 MACROPHAGE CELL LINE MODEL. Experimental Lung Research, 2005, 31, 341-360.	1.2	23
80	Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution. Toxicology in Vitro, 2005, 19, 123-134.	2.4	91
81	Characterization of physicochemical properties of beryllium aerosols associated with prevalence of chronic beryllium disease. Journal of Environmental Monitoring, 2004, 6, 523.	2.1	54
82	Surface Area of Respirable Beryllium Metal, Oxide, and Copper Alloy Aerosols and Implications for Assessment of Exposure Risk of Chronic Beryllium Disease. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety. 2003. 64, 297-305.	0.4	43