Seung Yoon Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054960/publications.pdf

Version: 2024-02-01

759233 752698 28 416 12 20 h-index citations g-index papers 32 32 32 726 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells. Applied Physics Letters, 2013, 102, .	3.3	46
2	Improvement of charge balance, recombination zone confinement, and low efficiency roll-off in green phosphorescent OLEDs by altering electron transport layer thickness. Materials Research Express, 2018, 5, 076201.	1.6	42
3	Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nature Communications, 2021, 12, 2864.	12.8	42
4	Recombination Zone Control without Sensing Layer and the Exciton Confinement in Green Phosphorescent OLEDs by Excluding Interface Energy Transfer. Journal of Physical Chemistry C, 2018, 122, 2951-2958.	3.1	36
5	Effects of Gold-Nanoparticle Surface and Vertical Coverage by Conducting Polymer between Indium Tin Oxide and the Hole Transport Layer on Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15031-15041.	8.0	27
6	Effects of the Wrinkle Structure and Flat Structure Formed During Static Low-Temperature Annealing of ZnO on the Performance of Inverted Polymer Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9191-9201.	3.1	25
7	Harvesting near- and far-field plasmonic enhancements from large size gold nanoparticles for improved performance in organic bulk heterojunction solar cells. Organic Electronics, 2019, 66, 94-101.	2.6	25
8	Dopant-Free Hydrogenated Amorphous Silicon Thin-Film Solar Cells Using Molybdenum Oxide and Lithium Fluoride. Journal of Physical Chemistry C, 2013, 117, 23459-23468.	3.1	16
9	Enhanced device efficiency in organic light-emitting diodes by dual oxide buffer layer. Organic Electronics, 2018, 56, 254-259.	2.6	16
10	Multiaxial wavy top-emission organic light-emitting diodes on thermally prestrained elastomeric substrates. Organic Electronics, 2017, 48, 314-322.	2.6	14
11	6.16% Efficiency of Solid-State Fiber Dye-Sensitized Solar Cells Based on LiTFSI Electrolytes with Novel TEMPOL Derivatives. ACS Sustainable Chemistry and Engineering, 2020, 8, 15065-15071.	6.7	14
12	Highly efficient hybrid thin-film solar cells using a solution-processed hole-blocking layer. Physical Chemistry Chemical Physics, 2013, 15, 1788-1792.	2.8	13
13	Doping-free silicon thin film solar cells using a vanadium pentoxide window layer and a LiF/Al back electrode. Applied Physics Letters, 2013, 103, .	3.3	12
14	Improved charge balance in phosphorescent organic light-emitting diodes by different ultraviolet ozone treatments on indium tin oxide. Organic Electronics, 2018, 61, 343-350.	2.6	11
15	Replacement of n-type layers with a non-toxic APTES interfacial layer to improve the performance of amorphous Si thin-film solar cells. RSC Advances, 2019, 9, 7536-7542.	3.6	10
16	Intramolecular charge transfer-based spirobifluorene-coupled heteroaromatic moieties as efficient hole transport layer and host in phosphorescent organic light-emitting diodes. Organic Electronics, 2020, 85, 105825.	2.6	10
17	Correlation between interlayer thickness and device performance in blue phosphorescent organic light emitting diodes with a quantum well structure. Organic Electronics, 2017, 42, 343-347.	2.6	9
18	Effects of Recombination Zone Formation on Optical Path Length and Device Performance in Blue Phosphorescent Organic Light-Emitting Diodes with Quantum Well Structure. ECS Journal of Solid State Science and Technology, 2016, 5, R44-R49.	1.8	7

#	Article	IF	CITATIONS
19	Improved hydrogenated amorphous silicon thin-film solar cells realized by replacing n-type Si layer with PFN interfacial layer. Synthetic Metals, 2017, 228, 91-98.	3.9	7
20	Comparison of organic light emitting diode performance using the spectroradiometer and the integrating sphere measurements. AIP Advances, 2020, 10 , .	1.3	6
21	Improved design of highly efficient microsized lithium-ion batteries for stretchable electronics. Journal of Micromechanics and Microengineering, 2019, 29, 075008.	2.6	5
22	Efficient Photon Extraction in Topâ€Emission Organic Lightâ€Emitting Devices Based on Ampicillin Microstructures. Advanced Materials, 2022, 34, .	21.0	5
23	Impact of tunable 2-(1 <i>H</i> -indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties. RSC Advances, 2019, 9, 14544-14557.	3. 6	4
24	The effect of introducing antibiotics into organic light-emitting diodes. Communications Physics, 2019, 2, .	5. 3	3
25	Analysis of device performance and thin-film properties of thermally damaged organic light-emitting diodes. Organic Electronics, 2021, 99, 106304.	2.6	3
26	Improved device efficiency and lifetime of perovskite light-emitting diodes by size-controlled polyvinylpyrrolidone-capped gold nanoparticles with dipole formation. Scientific Reports, 2022, 12, 2300.	3.3	3
27	Y-shaped donor-Ï€-acceptor based deep-blue electroluminescent material for Non-doped organic light emitting devices. Journal of Luminescence, 2021, 236, 118088.	3.1	2
28	Direction-dependent stretchability of AgNW electrodes on microprism-mediated elastomeric substrates. AIP Advances, 2018, 8, 065227.	1.3	1