Yuki Kohno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lonic liquid/water mixtures: from hostility to conciliation. Chemical Communications, 2012, 48, 7119.	4.1	319
2	Thermoresponsive polyelectrolytes derived from ionic liquids. Polymer Chemistry, 2015, 6, 2163-2178.	3.9	184
3	Temperature-responsive ionic liquid/water interfaces: relation between hydrophilicity of ions and dynamic phase change. Physical Chemistry Chemical Physics, 2012, 14, 5063.	2.8	142
4	Material design of ionic liquids to show temperature-sensitive LCST-type phase transition after mixing with water. Australian Journal of Chemistry, 2011, 64, 1560.	0.9	100
5	Extraction of proteins with temperature sensitive and reversible phase change of ionic liquid/water mixture. Polymer Chemistry, 2011, 2, 862.	3.9	92
6	Key Factors to Prepare Polyelectrolytes Showing Temperature-Sensitive Lower Critical Solution Temperature-type Phase Transitions in Water. Australian Journal of Chemistry, 2012, 65, 91.	0.9	83
7	lonic liquid-derived charged polymers to show highly thermoresponsive LCST-type transition with water at desired temperatures. Chemical Communications, 2012, 48, 11883.	4.1	82
8	Functional Design of Ionic Liquids: Unprecedented Liquids that Contribute to Energy Technology, Bioscience, and Materials Sciences. Bulletin of the Chemical Society of Japan, 2019, 92, 852-868.	3.2	75
9	Phosphonium-based poly(Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity. Journal of Membrane Science, 2016, 498, 408-413.	8.2	74
10	Design and properties of functional zwitterions derived from ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 10978-10991.	2.8	71
11	ls seven the minimum number of water molecules per ion pair for assured biological activity in ionic liquid–water mixtures?. Physical Chemistry Chemical Physics, 2015, 17, 14454-14460.	2.8	59
12	Chiral Stability of Phosphonium-type Amino Acid Ionic Liquids. Chemistry Letters, 2006, 35, 1252-1253.	1.3	50
13	Dual stimuli-responsive phase transition of an ionic liquid/water mixture. Chemical Communications, 2011, 47, 4772.	4.1	48
14	Detection of small differences in the hydrophilicity of ions using the LCST-type phase transition of an ionic liquid–water mixture. Chemical Communications, 2013, 49, 93-95.	4.1	37
15	Ammonium based zwitterions showing both LCST- and UCST-type phase transitions after mixing with water in a very narrow temperature range. Chemical Communications, 2014, 50, 15450-15452.	4.1	35
16	Introduction of hydrophilic groups onto the ortho-position of benzoate anions induced phase separation of the corresponding ionic liquids with water. Chemical Communications, 2013, 49, 10248.	4.1	34
17	Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Saltingâ€Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties. Macromolecular Rapid Communications, 2016, 37, 1130-1134.	3.9	34
18	Addition of suitably-designed zwitterions improves the saturated water content of hydrophobic ionic liquids. Chemical Communications, 2012, 48, 11220.	4.1	32

Үикі Конмо

#	Article	IF	CITATIONS
19	lonic liquids showing phase separation with water prepared by mixing hydrophilic and polar amino acid ionic liquids. Chemical Communications, 2013, 49, 8988.	4.1	31
20	lmidazoliumâ€Based Poly(ionic liquid)/lonic Liquid Ionâ€Gels with High Ionic Conductivity Prepared from a Curable Poly(ionic liquid). Macromolecular Rapid Communications, 2016, 37, 1150-1154.	3.9	30
21	Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins. International Journal of Molecular Sciences, 2013, 14, 18350-18361.	4.1	27
22	Reversible water uptake/release by thermoresponsive polyelectrolyte hydrogels derived from ionic liquids. Chemical Communications, 2015, 51, 9287-9290.	4.1	27
23	Density fluctuations in aqueous solution of ionic liquid with lower critical solution temperature: Mixture of tetrabutylphosphonium trifluoroacetate and water. Chemical Physics Letters, 2015, 628, 108-112.	2.6	26
24	A thermoresponsive poly(ionic liquid) membrane enables concentration of proteins from aqueous media. Chemical Communications, 2016, 52, 7497-7500.	4.1	25
25	A Fine Tuning of LCST-type Phase Transition of Poly(ionic liquid)s in Water. Chemistry Letters, 2015, 44, 238-240.	1.3	24
26	A cobalt(ii) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination. Chemical Communications, 2014, 50, 6633.	4.1	22
27	Temperature-Driven and Reversible Assembly of Homopolyelectrolytes Derived from Suitably Designed Ionic Liquids in Water. Australian Journal of Chemistry, 2013, 66, 1393.	0.9	21
28	High Ethene/Ethane Selectivity in 2,2′â€Bipyridineâ€Based Silver(I) Complexes by Removal of Coordinated Solvent. Angewandte Chemie - International Edition, 2015, 54, 5740-5743.	13.8	20
29	Selective Transport of Water-Soluble Proteins from Aqueous to Ionic Liquid Phase via a Temperature-Sensitive Phase Change of These Mixtures. Australian Journal of Chemistry, 2012, 65, 1548.	0.9	18
30	Design of Ionic Liquid-Derived Polyelectrolyte Gels Toward Reversible Water Absorption/Desorption System Driven by Small Temperature Change. Australian Journal of Chemistry, 2014, 67, 1666.	0.9	16
31	Effect of phase behavior for ionic liquid catalysts with reactants/products on reactivity of esterification from long-chain fatty alcohols and fatty acids. Fluid Phase Equilibria, 2019, 490, 107-113.	2.5	15
32	Metal ontaining ionic liquidâ€based, uncharged–charged diblock copolymers that form ordered, phaseâ€separated microstructures and reversibly coordinate small protic molecules. Journal of Polymer Science Part A, 2017, 55, 2961-2965.	2.3	14
33	Renaturation of Cytochrome <i>c</i> Dissolved in Polar Phosphonate-type Ionic Liquids Using Highly Polar Zwitterions. Chemistry Letters, 2017, 46, 870-872.	1.3	14
34	Zwitterion/BrÃ,nsted Acid Mixtures Showing Controlled Lower Critical Solution Temperatureâ€Type Phase Changes with Water. Chemistry - A European Journal, 2016, 22, 12262-12265.	3.3	11
35	Design of thermoresponsive poly(ionic liquid) gels containing proline units to catalyse aldol reaction in water. Polymer, 2018, 134, 20-23.	3.8	10
36	Reversible and Selective O ₂ Binding Using a New Thermoresponsive Cobalt(II)-Based Ionic Liquid. Industrial & Engineering Chemistry Research, 2015, 54, 12214-12216.	3.7	7

#	Article	IF	CITATIONS
37	Control of phase separation behaviour of ionic liquid catalysts with reactants/products toward synthesis of long-chain wax esters at moderate temperatures. Reaction Chemistry and Engineering, 2019, 4, 627-633.	3.7	5
38	Ionic liquid-derived polyelectrolyte promoting the biphasic condensation of immiscible reactants at moderate temperature. Reaction Chemistry and Engineering, 2021, 6, 2014-2017.	3.7	1
39	Frontispiece: Zwitterion/BrÃ,nsted Acid Mixtures Showing Controlled Lower Critical Solution Temperature-Type Phase Changes with Water. Chemistry - A European Journal, 2016, 22, .	3.3	0