Jianqiang Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/9054532/jianqiang-wang-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60
papers

2,481
citations

30
h-index

8-index

5.47
ext. papers

ext. citations

30
k-index

8-4
k-index

5-47
k-index

#	Paper	IF	Citations
60	Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 6211-8	9.5	242
59	Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. <i>Journal of Hazardous Materials</i> , 2013 , 244-245, 121-9	12.8	215
58	Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation. <i>Journal of Membrane Science</i> , 2017 , 540, 354-361	9.6	145
57	In Situ Reduction of Silver by Polydopamine: A Novel Antimicrobial Modification of a Thin-Film Composite Polyamide Membrane. <i>Environmental Science & Environmental Science & </i>	10.3	131
56	Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications. <i>RSC Advances</i> , 2013 , 3, 8978	3.7	99
55	Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7014-7020	13	91
54	Catalytic PVDF membrane for continuous reduction and separation of p-nitrophenol and methylene blue in emulsified oil solution. <i>Chemical Engineering Journal</i> , 2018 , 334, 579-586	14.7	87
53	Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. <i>Journal of Membrane Science</i> , 2018 , 551, 234-242	9.6	84
52	Does Hydrophilic Polydopamine Coating Enhance Membrane Rejection of Hydrophobic Endocrine-Disrupting Compounds?. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 332-338	11	84
51	Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification. <i>Carbon</i> , 2016 , 103, 94-100	10.4	83
50	Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. <i>Journal of Colloid and Interface Science</i> , 2015 , 440, 32-8	9.3	68
49	A One-Step Rapid Assembly of Thin Film Coating Using Green Coordination Complexes for Enhanced Removal of Trace Organic Contaminants by Membranes. <i>Environmental Science & Technology</i> , 2017 , 51, 12638-12643	10.3	66
48	Hierarchically structured polyacrylonitrile nanofiber mat as highly efficient lead adsorbent for water treatment. <i>Chemical Engineering Journal</i> , 2015 , 262, 775-784	14.7	65
47	A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: Mechanistic insights and implications. <i>Water Research</i> , 2017 , 121, 197-203	12.5	55
46	Polymeric catalytically active membranes for reaction-separation coupling: A review. <i>Journal of Membrane Science</i> , 2019 , 583, 118-138	9.6	54
45	Solvent-thermal induced roughening: A novel and versatile method to prepare superhydrophobic membranes. <i>Journal of Membrane Science</i> , 2018 , 564, 465-472	9.6	50
44	Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats. <i>Applied Surface Science</i> , 2014 , 316, 245-250	6.7	47

43	Janus Polyvinylidene Fluoride Membrane with Extremely Opposite Wetting Surfaces via One Single-Step Unidirectional Segregation Strategy. <i>ACS Applied Materials & Discourse Mate</i>	7 ² 2 ⁵ 495	54 ⁶
42	One-step tailoring surface roughness and surface chemistry to prepare superhydrophobic polyvinylidene fluoride (PVDF) membranes for enhanced membrane distillation performances. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 99-107	9.3	43
41	Electrosprayed polyamide nanofiltration membrane with intercalated structure for controllable structure manipulation and enhanced separation performance. <i>Journal of Membrane Science</i> , 2020 , 602, 117971	9.6	40
40	One-pot preparation of polyimide/Fe3O4 magnetic nanofibers with solvent resistant properties. <i>Composites Science and Technology</i> , 2016 , 133, 97-103	8.6	37
39	Superhydrophilic carbonaceous-silver nanofibrous membrane for complex oil/water separation and removal of heavy metal ions, organic dyes and bacteria. <i>Journal of Membrane Science</i> , 2020 , 614, 11849	1 ^{9.6}	36
38	Sustaining fouling resistant membranes: Membrane fabrication, characterization and mechanism understanding of demulsification and fouling-resistance. <i>Journal of Membrane Science</i> , 2019 , 581, 105-1	93 ⁶	35
37	A novel gravity-driven nanofibrous membrane for point-of-use water disinfection: polydopamine-induced in situ silver incorporation. <i>Scientific Reports</i> , 2017 , 7, 2334	4.9	35
36	Fast polydopamine coating on reverse osmosis membrane: Process investigation and membrane performance study. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 239-244	9.3	35
35	Superhydrophilic and mechanical robust PVDF nanofibrous membrane through facile interfacial Span 80 welding for excellent oil/water separation. <i>Applied Surface Science</i> , 2019 , 485, 179-187	6.7	33
34	Electrospun Self-Supporting Nanocomposite Films of Na9[EuW10O36][B2H2O/PAN as pH-Modulated Luminescent Switch. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 2598-260	3 ^{.9}	33
33	Gravity-driven catalytic nanofibrous membranes prepared using a green template. <i>Journal of Membrane Science</i> , 2017 , 525, 298-303	9.6	32
32	Preparation of #Fe2O3/polyacrylonitrile nanofiber mat as an effective lead adsorbent. <i>Environmental Science: Nano</i> , 2016 , 3, 894-901	7.1	32
31	Janus Membrane with Unparalleled Forward Osmosis Performance. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 79-85	11	32
30	Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate. <i>Frontiers of Chemical Science and Engineering</i> , 2018 , 12, 273-282	4.5	28
29	Novel Janus membrane with unprecedented osmosis transport performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 632-638	13	27
28	Functionalization of polyacrylonitrile nanofiber using ATRP method for boric acid removal from aqueous solution. <i>Journal of Water Process Engineering</i> , 2014 , 3, 98-104	6.7	24
27	Polydopamine enabled palladium loaded nanofibrous membrane and its catalytic performance for trichloroethene dechlorination. <i>Applied Catalysis A: General</i> , 2018 , 559, 122-126	5.1	21
26	Poly(N,N-dimethylaminoethyl methacrylate) modification of a regenerated cellulose membrane using ATRP method for copper(II) ion removal. <i>RSC Advances</i> , 2013 , 3, 20625	3.7	20

25	Thiol-functionalized electrospun polyacrylonitrile nanofibrous membrane for highly efficient removal of mercury ions. <i>Chemical Engineering Research and Design</i> , 2016 , 113, 1-8	5.5	20
24	Living Lelectrospray A controllable polydopamine nano-coating strategy with zero liquid discharge for separation. <i>Journal of Membrane Science</i> , 2019 , 586, 170-176	9.6	17
23	Functionalization of polyacrylonitrile nanofiber mat via surface-initiated atom transfer radical polymerization for copper ions removal from aqueous solution. <i>Desalination and Water Treatment</i> , 2015 , 54, 2856-2867		16
22	Carbonaceous microsphere/nanofiber composite superhydrophilic membrane with enhanced anti-adhesion property towards oil and anionic surfactant: Membrane fabrication and applications. <i>Separation and Purification Technology</i> , 2020 , 235, 116189	8.3	16
21	Fabrication and Formation Mechanism of Ag Nanoplate-Decorated Nanofiber Mats and Their Application in SERS. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 86-92	4.5	16
20	Electrosprayed polydopamine membrane: Surface morphology, chemical stability and separation performance study. <i>Separation and Purification Technology</i> , 2020 , 244, 116857	8.3	15
19	Removal of perfluorooctane sulfonate by a gravity-driven membrane: Filtration performance and regeneration behavior. <i>Separation and Purification Technology</i> , 2017 , 174, 136-144	8.3	14
18	Gravity-driven catalytic nanofibrous membrane with microsphere and nanofiber coordinated structure for ultrafast continuous reduction of 4-nitrophenol. <i>Journal of Colloid and Interface Science</i> , 2019 , 538, 108-115	9.3	14
17	Self-assembly of various silver nanocrystals on PmPD/PAN nanofibers as a high-performance 3D SERS substrate. <i>Analyst, The</i> , 2015 , 140, 5707-15	5	13
16	In situ generated micro-bubbles enhanced membrane antifouling for separation of oil-in-water emulsion. <i>Journal of Membrane Science</i> , 2021 , 621, 119005	9.6	13
15	Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 390-399	13	13
14	Beyond Superwetting Surfaces: Dual-Scale Hyperporous Membrane with Rational Wettability for "Nonfouling" Emulsion Separation via Coalescence Demulsification. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 4731-4739	9.5	12
13	The influence of polyamic acid molecular weight on the membrane structure and performance of polyimide solvent-resistant nanofiltration. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 777-785	3.5	10
12	Poly(vinyl alcohol)/polydopamine hybrid nanofiltration membrane fabricated through aqueous electrospraying with excellent antifouling and chlorine resistance. <i>Journal of Membrane Science</i> , 2021 , 632, 119385	9.6	10
11	Microstructure, Texture, and Mechanical Properties of Continuously Extruded and Rolled AZ31 Magnesium Alloy Sheets. <i>Journal of Materials Engineering and Performance</i> , 2019 , 28, 6692-6703	1.6	6
10	ZIF-67 derived nanofibrous catalytic membranes for ultrafast removal of antibiotics under flow-through filtration via non-radical dominated pathway. <i>Journal of Membrane Science</i> , 2021 , 639, 1	19782	5
9	Reversible filtration redox of methylene blue in dimethylsulfoxide by manganese oxide loaded carbonaceous nanofibrous membrane through Fenton-like oxidation. <i>Journal of Colloid and Interface Science</i> , 2021 , 588, 436-445	9.3	4
8	Electrosprayed polyamide nanofiltration membrane with uniform and tunable pores for sub-nm precision molecule separation. <i>Separation and Purification Technology</i> , 2021 , 282, 120131	8.3	3

LIST OF PUBLICATIONS

7	Interfacial polymerized polyamide nanofiltration membrane by demulsification of hexane-in-water droplets through hydrophobic PTFE membrane: Membrane performance and formation mechanism. <i>Separation and Purification Technology</i> , 2021 , 275, 119227	8.3	3
6	Catalytic conversion controlled interfacial polymerization for polyamide membranes. <i>Reactive and Functional Polymers</i> , 2018 , 131, 84-88	4.6	2
5	Confined Channels Induced Coalescence Demulsification and Slippery Interfaces Constructed Fouling Resist-Release for Long-Lasting Oil/Water Separation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 ,	9.5	2
4	High-Temperature Magic-Angle Spin Nuclear Magnetic Resonance Reveals Sodium Ion-Doped Crystal-Phase Formation in FLiNaK Eutectic Salt Solidification. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 4704-4709	3.8	2
3	Air nanobubbles (ANBs) incorporated sandwich-structured carbon nanotube membranes (CNM) for highly permeable and stable forward osmosis 2022 , 2, 100026		0
2	Second interfacial polymerization decorating defects of TFC NF membrane formed by 1D nanochannels for improving separation performance. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 10, 106896	6.8	0
1	Bone/muscle-inspired polymer porous matrix toughened carbon nanofibrous catalytic membranes for robust emerging contaminants removal. <i>Chemical Engineering Journal</i> , 2022 , 442, 136069	14.7	О