Anne Y Saiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054528/publications.pdf

Version: 2024-02-01

22 papers

3,087 citations

16 h-index 794469 19 g-index

22 all docs 22 docs citations

times ranked

22

4692 citing authors

#	Article	IF	CITATIONS
1	Abstract 1057: Combination of the KRASG12Cinhibitor sotorasib with targeted agents improves anti-tumor efficacy in KRAS p.G12Ccancer models., 2021,,.		O
2	Abstract 1285: ⟨i⟩In vitro⟨/i⟩ characterization of sotorasib and other RAS â€~His95-groove' binders and investigation of resistance mechanisms. Cancer Research, 2021, 81, 1285-1285.	0.4	2
3	Diverse alterations associated with resistance to KRAS(G12C) inhibition. Nature, 2021, 599, 679-683.	13.7	183
4	Discovery of a Covalent Inhibitor of KRAS ^{G12C} (AMG 510) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry, 2020, 63, 52-65.	2.9	403
5	Discovery of <i>N</i> -(1-Acryloylazetidin-3-yl)-2-(1 <i>H</i> -indol-1-yl)acetamides as Covalent Inhibitors of KRAS ^{G12C} . ACS Medicinal Chemistry Letters, 2019, 10, 1302-1308.	1.3	66
6	The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 2019, 575, 217-223.	13.7	1,375
7	Abstract 3090: <i>In vivo</i> characterization of AMG 510 - a potent and selective KRASG12Ccovalent small molecule inhibitor in preclinical KRASG12Ccancer models. Cancer Research, 2019, 79, 3090-3090.	0.4	5
8	Abstract 4455: Discovery of AMG 510, a first-in-human covalent inhibitor of KRASG12C for the treatment of solid tumors. , 2019 , , .		4
9	Abstract 4484: Discovery and in vitro characterization of AMG 510–a potent and selective covalent small-molecule inhibitor of KRASG12C. , 2019, , .		9
10	The Role of MDM2 Amplification and Overexpression in Tumorigenesis. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026336.	2.9	158
11	Identifying the determinants of response to MDM2 inhibition. Oncotarget, 2015, 6, 7701-7712.	0.8	35
12	The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents. Molecular Cancer Therapeutics, 2015, 14, 649-658.	1.9	112
13	Discovery of AM-7209, a Potent and Selective 4-Amidobenzoic Acid Inhibitor of the MDM2–p53 Interaction. Journal of Medicinal Chemistry, 2014, 57, 10499-10511.	2.9	42
14	Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2–p53 Inhibitor in Clinical Development. Journal of Medicinal Chemistry, 2014, 57, 1454-1472.	2.9	223
15	Discovery of Potent and Simplified Piperidinone-Based Inhibitors of the MDM2–p53 Interaction. ACS Medicinal Chemistry Letters, 2014, 5, 894-899.	1.3	25
16	Selective and Potent Morpholinone Inhibitors of the MDM2–p53 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2014, 57, 2472-2488.	2.9	76
17	Novel Inhibitors of the MDM2-p53 Interaction Featuring Hydrogen Bond Acceptors as Carboxylic Acid Isosteres. Journal of Medicinal Chemistry, 2014, 57, 2963-2988.	2.9	48
18	MDM2 antagonists synergize broadly and robustly with compounds targeting fundamental oncogenic signaling pathways. Oncotarget, 2014, 5, 2030-2043.	0.8	45

#	Article	lF	CITATION
19	Rational Design and Binding Mode Duality of MDM2–p53 Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 4053-4070.	2.9	71
20	Structure-Based Design of Novel Inhibitors of the MDM2–p53 Interaction. Journal of Medicinal Chemistry, 2012, 55, 4936-4954.	2.9	151
21	Improvement of the synthesis and pharmacokinetic properties of chromenotriazolopyrimidine MDM2-p53 protein-protein inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2752-2755.	1.0	37
22	From Bacterial Genomes to Novel Antibacterial Agents: Discovery, Characterization, and Antibacterial Activity of Compounds that Bind to HI0065 (YjeE) from Haemophilus influenzae. Chemical Biology and Drug Design, 2007, 69, 395-404.	1.5	17