Yuan-Peng Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054185/publications.pdf

Version: 2024-02-01

933447 996975 24 274 10 15 citations h-index g-index papers 27 27 27 346 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Science, 2017, 256, 65-71.	3.6	39
2	Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks. Scientia Horticulturae, 2018, 227, 255-260.	3.6	31
3	Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Scientia Horticulturae, 2019, 243, 148-158.	3.6	21
4	Advances in the regulation of plant salt-stress tolerance by miRNA. Molecular Biology Reports, 2022, 49, 5041-5055.	2.3	20
5	Using differential thermal analysis to analyze cold hardiness in the roots of grape varieties. Scientia Horticulturae, 2014, 174, 155-163.	3.6	19
6	Grape root cell features related to phylloxera resistance and changes of anatomy and endogenous hormones during nodosity and tuberosity formation. Australian Journal of Grape and Wine Research, 2011, 17, 291-297.	2.1	17
7	Stimulation of cyclic electron flow around PSI as a response to the combined stress of high light and high temperature in grape leaves. Functional Plant Biology, 2018, 45, 1038.	2.1	16
8	Responses of photosystem II photochemistry and the alternative oxidase pathway to heat stress in grape leaves. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	15
9	Functional characterization of WRKY46 in grape and its putative role in the interaction between grape and phylloxera (Daktulosphaira vitifoliae). Horticulture Research, 2019, 6, 102.	6.3	14
10	Gene expression profiling of rootstock â€~140Ru' and Vitis vinifera L. cv. â€~Crimson Seedless' grape root infected with grape phylloxera. Plant Growth Regulation, 2014, 73, 1-8.	S 3.4	13
11	The apple BTB protein MdBT2 positively regulates MdCOP1 abundance to repress anthocyanin biosynthesis. Plant Physiology, 2022, 190, 305-318.	4.8	10
12	The phenotype of grape leaves caused by acetochlor or fluoroglycofen, and effects of latter herbicide on grape leaves. Pesticide Biochemistry and Physiology, 2014, 114, 102-107.	3.6	8
13	Analyzing the grape leaf proteome and photosynthetic process provides insights into the injury mechanisms of ozone stress. Plant Growth Regulation, 2020, 91, 143-155.	3.4	8
14	The distribution and species of Ca2+ and subcellular localization of Ca2+ and Ca2+-ATPase in grape leaves of plants treated with fluoroglycofen. Pesticide Biochemistry and Physiology, 2017, 143, 207-213.	3.6	7
15	Melatonin Relieves Ozone Stress in Grape Leaves by Inhibiting Ethylene Biosynthesis. Frontiers in Plant Science, 2021, 12, 702874.	3.6	7
16	Dark inhibits leaf size by controlling carbohydrate and auxin catabolism in grape. Scientia Horticulturae, 2021, 288, 110377.	3.6	6
17	Ozone risk assessment of grapevine â€~Cabernet Sauvignon' using open-top chambers. Scientia Horticulturae, 2020, 260, 108874.	3.6	5
18	Analysis of the interaction effects of light and O3 on fluorescence properties of â€~Cabernet Sauvignon' grapes based on response surface methodology. Scientia Horticulturae, 2017, 225, 599-606.	3.6	4

#	Article	IF	CITATION
19	The evaluation of NaHCO3 stress mechanisms of grape hybrid rootstocks. Scientia Horticulturae, 2019, 251, 167-173.	3.6	4
20	Effect of Seawater Irrigation on the Sugars, Organic Acids, and Volatiles in †Reliance†Grape. Horticulturae, 2022, 8, 248.	2.8	3
21	Root temperature regulated frost damage in leaves of the grapevine <i>Vitis vinifera</i> L Australian Journal of Grape and Wine Research, 2018, 24, 181-189.	2.1	2
22	Phosphoproteomic analysis of ozone stress-responsive mechanisms in grapevine identifies KEG required for stress regulation. Plant Science, 2021, 311, 111008.	3.6	2
23	Measurement of grape root firmness and its application to the evaluation of cold hardiness. Australian Journal of Grape and Wine Research, 2018, 24, 406-412.	2.1	0
24	The Umbrella Type Canopy Increases Tolerance to Abiotic Stress-Leaf Microenvironment Temperature and Tropospheric Ozone in â€~Chambourcin'. Atmosphere, 2022, 13, 823.	2.3	0