Wangfeng Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054092/publications.pdf

Version: 2024-02-01

201575 233338 2,137 47 27 45 h-index citations g-index papers 47 47 47 1206 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Realizing high-performance capacitive energy storage in lead-free relaxor ferroelectrics via synergistic effect design. Journal of the European Ceramic Society, 2022, 42, 129-139.	2.8	39
2	Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Composites Part B: Engineering, 2022, 230, 109493.	5.9	52
3	High energy storage performance in tungsten bronze-based relaxor ceramic via doping with CuO. Scripta Materialia, 2022, 211, 114514.	2.6	16
4	Superior energy storage performance in (Bi _{0.5} Na _{0.5})TiO ₃ -based lead-free relaxor ferroelectrics for dielectric capacitor application <i>via</i> multiscale optimization design. Journal of Materials Chemistry A, 2022, 10, 9535-9546.	5.2	70
5	Excellent energy storage performance of paraelectric Ba0.4Sr0.6TiO3 based ceramics through induction of polar nano-regions. Ceramics International, 2022, 48, 19864-19873.	2.3	9
6	Synergy of a Stabilized Antiferroelectric Phase and Domain Engineering Boosting the Energy Storage Performance of NaNbO ₃ -Based Relaxor Antiferroelectric Ceramics. ACS Applied Materials & Amp; Interfaces, 2022, 14, 17662-17673.	4.0	48
7	Promoting Energy Storage Performance of Sr _{0.7} Ba _{0.3} Nb ₂ O ₆ Tetragonal Tungsten Bronze Ceramic by a Two-Step Sintering Technique. ACS Applied Electronic Materials, 2022, 4, 452-460.	2.0	15
8	Simultaneously achieving high energy storage performance and remarkable thermal stability in BiO.5KO.5TiO3-based ceramics. Materials Today Energy, 2022, 28, 101078.	2.5	11
9	Remarkable capacitive performance in novel tungsten bronze ceramics. Dalton Transactions, 2021, 50, 124-130.	1.6	30
10	Significantly tailored energy-storage performances in Bi _{0.5} Na _{0.5} TiO ₃ â€"SrTiO ₃ -based relaxor ferroelectric ceramics by introducing bismuth layer-structured relaxor BaBi ₂ Nb ₂ O ₉ for capacitor application. Journal of Materials	2.7	50
11	Chemistry C, 2021, 9, 5234-5243. Simultaneously Realizing Superior Energy Storage Properties and Outstanding Charge–Discharge Performances in Tungsten Bronze-Based Ceramic for Capacitor Applications. Inorganic Chemistry, 2021, 60, 6559-6568.	1.9	46
12	Relaxor ferroelectric (Bi0.5Na0.5)TiO3-based ceramic with remarkable comprehensive energy storage performance under low electric field for capacitor applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 21164-21177.	1.1	9
13	(Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with simultaneous high energy storage properties and remarkable charge-discharge performances under low working electric fields for dielectric capacitor applications. Ceramics International, 2021, 47, 25800-25809.	2.3	25
14	Pb/Bi-free Tungsten Bronze-Based Relaxor Ferroelectric Ceramics with Remarkable Energy Storage Performance. ACS Applied Energy Materials, 2021, 4, 9066-9076.	2.5	13
15	High capacitive performance at moderate operating field in (Bi0.5Na0.5)TiO3-based dielectric ceramics via synergistic effect of site engineering strategy. Chemical Engineering Journal, 2021, 426, 130811.	6.6	45
16	Tailoring electromechanical performance in BiScO3-modified Bi0.5Na0.5TiO3-based lead-free piezoceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 1491-1501.	1.1	6
17	Giant Fieldâ€Induced Strain with Low Hysteresis and Boosted Energy Storage Performance under Low Electric Field in (Bi _{0.5} Na _{0.5})TiO ₃ â€Based Grain Orientationâ€Controlled Ceramics. Advanced Electronic Materials, 2020, 6, 2000332.	2.6	59
18	Enhanced energy storage performance in bismuth layer-structured BaBi2Me2O9 (Me = Nb and Ta) relaxor ferroelectric ceramics. Ceramics International, 2020, 46, 15907-15914.	2.3	23

#	Article	IF	CITATIONS
19	Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics. Journal of the European Ceramic Society, 2020, 40, 4475-4486.	2.8	123
20	Integrating chemical engineering and crystallographic texturing design strategy for the realization of practically viable lead-free sodium bismuth titanate-based incipient piezoceramics. Dalton Transactions, 2020, 49, 8661-8671.	1.6	10
21	Influences of rare earth site engineering on piezoelectric and electromechanical response of (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 6560-6573.	1.1	9
22	Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics. Journal of the European Ceramic Society, 2020, 40, 5450-5457.	2.8	103
23	Achieving high-energy storage performance in 0.67Bi1Sm FeO3-0.33BaTiO3 lead-free relaxor ferroelectric ceramics. Ceramics International, 2020, 46, 11549-11555.	2.3	83
24	Multifunctional bismuth sodium titanate-based ferroelectric ceramics with bright red emission and large strain response. Materials Chemistry and Physics, 2020, 244, 122706.	2.0	0
25	Tailoring frequency-insensitive large field-induced strain and energy storage properties in (Ba _{0.85} Ca _{0.15})(Zr _{0.1} Ti _{0.9})O ₃ -modified (Bi _{0.5} Na _{0.5})TiO ₃ lead-free ceramics. Dalton Transactions, 2019, 48, 10160-10173.	1.6	59
26	BaTiO3 nanowires-induced phase transition and thermally stable strain in (Bi0.5Na0.5)TiO3 piezoelectric ceramics. Ceramics International, 2019, 45, 18623-18631.	2.3	9
27	Large electrostrictive effect in lead-free (Bi.5Na.5)TiO3-based composite piezoceramics. Ceramics International, 2018, 44, 8628-8634.	2.3	28
28	Promoting Charge Separation in <i>g</i> -C ₃ N ₄ /Graphene/MoS ₂ Photocatalysts by Two-Dimensional Nanojunction for Enhanced Photocatalytic H ₂ Production. ACS Applied Energy Materials, 2018, 1, 1400-1407.	2.5	171
29	Enhanced thermal stability, hardening of piezoelectric property, and mediated electromechanical response in (Bi0.5Na0.5)TiO3-based piezoceramics via composite approach. Ceramics International, 2018, 44, 17022-17032.	2.3	15
30	Electromechanical response and piezoelectric properties in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoceramics using nano-sized AlN modification. Ceramics International, 2018, 44, 16040-16050.	2.3	15
31	NaNbO 3 templates-induced phase evolution and enhancement of electromechanical properties in <00l> grain oriented lead-free BNT-based piezoelectric materials. Journal of the European Ceramic Society, 2017, 37, 2591-2604.	2.8	84
32	Lead-free BNT-based composite materials: enhanced depolarization temperature and electromechanical behavior. Dalton Transactions, 2017, 46, 15340-15353.	1.6	38
33	Microstructure and Piezoelectric Properties of Lead-Free (K _{0.5} Na _{0.5})NbO ₃ -LiNbO ₃ -SrTiO ₃ >Ceramics. Ferroelectrics, 2016, 490, 78-84.	0.3	1
34	Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi _{0.5} Na _{0.5} TiO ₃ -based lead-free ceramics. Dalton Transactions, 2016, 45, 8573-8586.	1.6	84
35	Phase evolution and correlation between tolerance factor and electromechanical properties in BNT-based ternary perovskite compounds with calculated end-member Bi(Me _{0.5} Ti _{0.5} O ₃ (Me = Zn, Mg, Ni, Co). Dalton Transactions, 2016, 45, 14141-14153.	1.6	47
36	Electromechanical properties and structure evolution in BiAlO3-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free piezoceramics. Journal of Alloys and Compounds, 2016, 667, 6-17.	2.8	45

#	Article	lF	CITATIONS
37	Effect of Different Templates on Electrical Properties of Textured KNN-Based Ceramics. Ferroelectrics, 2016, 490, 85-93.	0.3	6
38	Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics. Ceramics International, 2016, 42, 7669-7680.	2.3	97
39	Structure and electromechanical properties in Bi0.5Na0.5TiO3-based lead-free piezoceramics with calculated end-member Bi(Ni0.5Ti0.5)O3. Journal of the European Ceramic Society, 2015, 35, 3457-3466.	2.8	35
40	Effect of CaZrO ₃ on phase structure and electrical properties of KNN-based lead-free ceramics. RSC Advances, 2015, 5, 19647-19651.	1.7	32
41	Structure evolution and large strain response in BNT–BT lead-free piezoceramics modified with Bi(Ni0.5Ti0.5)O3. Journal of Alloys and Compounds, 2015, 649, 772-781.	2.8	90
42	Microwave dielectric properties of low temperature sintered ZnWO4–TiO2 composite ceramics. Ceramics International, 2015, 41, S435-S440.	2.3	21
43	Effect of different templates on structure evolution and large strain response under a low electric field in <00l>-textured lead-free BNT-based piezoelectric ceramics. Journal of the European Ceramic Society, 2015, 35, 2489-2499.	2.8	79
44	Phase Diagrams and Electromechanical Strains in Leadâ€Free BNTâ€Based Ternary Perovskite Compounds. Journal of the American Ceramic Society, 2014, 97, 3510-3518.	1.9	61
45	The Composition and Temperatureâ€Dependent Structure Evolution and Large Strain Response in (1â°' <i>x</i>)(<scp><scp>Bi</scp></scp> _{0.5} <scp><scp>Na</scp></scp> _{0.5} <ceramics. 2013,="" 246-252.<="" 96,="" american="" ceramic="" journal="" of="" society,="" td="" the=""><td>scp₃.ЂiO<,</td><td>/scpxx1/scp></td></ceramics.>	scp ₃.Ђ iO<,	/scpxx1/scp>
46	Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. Journal of Applied Physics, 2013, 114, .	1.1	99
47	High Capacitive Performance Achieved in NaNbO 3 â€Based Ceramics via Grain Refinement and Relaxation Enhancement. Energy Technology, 0, , 2100777.	1.8	6