Katalin Bocz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054012/publications.pdf Version: 2024-02-01

KATALIN ROCZ

#	Article	IF	CITATIONS
1	Development of natural fibre reinforced flame retarded epoxy resin composites. Polymer Degradation and Stability, 2015, 119, 68-76.	5.8	82
2	In vitro dissolution–permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. International Journal of Pharmaceutics, 2015, 491, 180-189.	5.2	58
3	Flame retarded self-reinforced poly(lactic acid) composites of outstanding impact resistance. Composites Part A: Applied Science and Manufacturing, 2015, 70, 27-34.	7.6	51
4	Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions. International Journal of Pharmaceutics, 2015, 494, 23-30.	5.2	44
5	Self-extinguishing polypropylene with a mass fraction of 9% intumescent additiveÂ- A new physical way for enhancing the fire retardant efficiency. Polymer Degradation and Stability, 2013, 98, 79-86.	5.8	28
6	Flame retardancy of microcellular poly(lactic acid) foams prepared by supercritical CO2-assisted extrusion. Polymer Degradation and Stability, 2018, 153, 100-108.	5.8	28
7	Development of flame retarded self-reinforced composites from automotive shredder plastic waste. Polymer Degradation and Stability, 2012, 97, 221-227.	5.8	27
8	Development of Flame-Retarded Nanocomposites from Recycled PET Bottles for the Electronics Industry. Polymers, 2019, 11, 233.	4.5	27
9	Development of Bioepoxy Resin Microencapsulated Ammonium-Polyphosphate for Flame Retardancy of Polylactic Acid. Molecules, 2019, 24, 4123.	3.8	27
10	Application of Melt-Blown Poly(lactic acid) Fibres in Self-Reinforced Composites. Polymers, 2018, 10, 766.	4.5	25
11	Microfibrous cyclodextrin boosts flame retardancy of poly(lactic acid). Polymer Degradation and Stability, 2021, 191, 109655.	5.8	21
12	Preparation of Low-Density Microcellular Foams from Recycled PET Modified by Solid State Polymerization and Chain Extension. Journal of Polymers and the Environment, 2019, 27, 343-351.	5.0	19
13	Flame Retardancy of Sorbitol Based Bioepoxy via Combined Solid and Gas Phase Action. Polymers, 2016, 8, 322.	4.5	17
14	Melting temperature versus crystallinity: new way for identification and analysis of multiple endotherms of poly(ethylene terephthalate). Journal of Polymer Research, 2020, 27, 1.	2.4	17
15	Effects of thermal annealing and solvent-induced crystallization on the structure and properties of poly(lactic acid) microfibres produced by high-speed electrospinning. Journal of Thermal Analysis and Calorimetry, 2020, 142, 581-594.	3.6	17
16	Effect of Particle Size of Additives on the Flammability and Mechanical Properties of Intumescent Flame Retarded Polypropylene Compounds. International Journal of Polymer Science, 2015, 2015, 1-7.	2.7	15
17	Key Role of Reinforcing Structures in the Flame Retardant Performance of Self-Reinforced Polypropylene Composites. Polymers, 2016, 8, 289.	4.5	12
18	Application of low-grade recyclate to enhance reactive toughening of poly(ethylene terephthalate). Polymer Degradation and Stability, 2021, 185, 109505.	5.8	12

KATALIN BOCZ

#	Article	IF	CITATIONS
19	Self-extinguishing polypropylene with a mass fraction of 9% intumescent additive II – Influence of highly oriented fibres. Polymer Degradation and Stability, 2013, 98, 2445-2451.	5.8	10
20	Flame retarded selfâ€reinforced polypropylene composites prepared by injection moulding. Polymers for Advanced Technologies, 2018, 29, 433-441.	3.2	10
21	Non-destructive characterisation of all-polypropylene composites using small angle X-ray scattering and polarized Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2018, 114, 250-257.	7.6	8
22	Recycled PET foaming: Supercritical carbon dioxide assisted extrusion with real-time quality monitoring. Advanced Industrial and Engineering Polymer Research, 2021, 4, 178-186.	4.7	6
23	Microfibrous cyclodextrin boosts flame retardancy of poly(lactic acid) II - phosphorous silane treatment further enhances the effectivity. Polymer Degradation and Stability, 2022, 200, 109938.	5.8	6
24	Water boosts reactive toughening of PET. Polymer Degradation and Stability, 2022, 203, 110052.	5.8	5
25	Development of Intumescent Flame Retardant for Polypropylene: Bio-epoxy Resin Microencapsulated Ammonium-polyphosphate. Periodica Polytechnica: Chemical Engineering, 0, , .	1.1	4
26	Flame retardancy of PET foams manufactured from bottle waste. Journal of Thermal Analysis and Calorimetry, 2023, 148, 217-228.	3.6	1