
Alexandre Simula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9053801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymerization-induced thermal self-assembly (PITSA). Chemical Science, 2015, 6, 1230-1236.	3.7	301
2	Expanding the Scope of the Photoinduced Living Radical Polymerization of Acrylates in the Presence of CuBr ₂ and Me ₆ -Tren. Macromolecules, 2014, 47, 3852-3859.	2.2	100
3	Photoinduced Synthesis of α,ω-Telechelic Sequence-Controlled Multiblock Copolymers. Macromolecules, 2015, 48, 1404-1411.	2.2	97
4	<i>Absolut</i> "copper catalyzation perfectedâ€; robust living polymerization of NIPAM: <i>Guinness</i> is good for SET-LRP. Polymer Chemistry, 2014, 5, 57-61.	1.9	80
5	Aqueous Copperâ€Mediated Living Radical Polymerisation of <i>N</i> â€Acryloylmorpholine, SET‣RP in Water. Macromolecular Rapid Communications, 2014, 35, 965-970.	2.0	58
6	New Class of Alkoxyamines for Efficient Controlled Homopolymerization of Methacrylates. ACS Macro Letters, 2016, 5, 1019-1022.	2.3	57
7	Copper(<scp>ii</scp>) gluconate (a non-toxic food supplement/dietary aid) as a precursor catalyst for effective photo-induced living radical polymerisation of acrylates. Polymer Chemistry, 2015, 6, 3581-3585.	1.9	56
8	Synthesis of well-defined α,ω-telechelic multiblock copolymers in aqueous medium: in situ generation of α,ω-diols. Polymer Chemistry, 2015, 6, 2226-2233.	1.9	54
9	Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polymer Chemistry, 2016, 7, 7002-7010.	1.9	54
10	Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Organic Media. Macromolecules, 2015, 48, 5517-5525.	2.2	50
11	Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Aqueous Media. Macromolecules, 2015, 48, 6421-6432.	2.2	49
12	Methacrylic block copolymers by sulfur free RAFT (SF RAFT) free radical emulsion polymerisation. Polymer Chemistry, 2017, 8, 1084-1094.	1.9	43
13	Cu(0)-RDRP of methacrylates in DMSO: importance of the initiator. Polymer Chemistry, 2018, 9, 2382-2388.	1.9	43
14	Renewable Terpene Derivative as a Biosourced Elastomeric Building Block in the Design of Functional Acrylic Copolymers. Biomacromolecules, 2019, 20, 2241-2251.	2.6	41
15	Biobased acrylic pressure-sensitive adhesives. Progress in Polymer Science, 2021, 117, 101396.	11.8	41
16	Biosourced terpenoids for the development of sustainable acrylic pressure-sensitive adhesives <i>via</i> emulsion polymerisation. Green Chemistry, 2020, 22, 4561-4569.	4.6	40
17	Paving the Way to Sustainable Waterborne Pressure-Sensitive Adhesives Using Terpene-Based Triblock Copolymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 17990-17998.	3.2	37
18	Synthesis and reactivity of α,ï‰-homotelechelic polymers by Cu(0)-mediated living radical polymerization. European Polymer Journal, 2015, 62, 294-303.	2.6	36

Alexandre Simula

#	Article	IF	CITATIONS
19	Nitroxide mediated suspension polymerization of methacrylic monomers. Chemical Engineering Journal, 2017, 316, 655-662.	6.6	33
20	Novel alkoxyamines for the successful controlled polymerization of styrene and methacrylates. Polymer Chemistry, 2017, 8, 1728-1736.	1.9	28
21	High solids content nitroxide mediated miniemulsion polymerization of n-butyl methacrylate. Polymer Chemistry, 2017, 8, 1628-1635.	1.9	28
22	The effect of ligand, solvent and Cu(0) source on the efficient polymerization of polyether acrylates and methacrylates in aqueous and organic media. Polymer Chemistry, 2015, 6, 5940-5950.	1.9	26
23	Synthesis of poly(methyl methacrylate) and block copolymers by semi-batch nitroxide mediated polymerization. Polymer Chemistry, 2016, 7, 6964-6972.	1.9	25
24	On the nitroxide mediated polymerization of methacrylates derived from bio-sourced terpenes in miniemulsion, a step towards sustainable products. Polymer Chemistry, 2020, 11, 1151-1160.	1.9	24
25	Polymerisation of 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS) and acryloyl phosphatidylcholine (APC) via aqueous Cu(0)-mediated radical polymerisation. Polymer Chemistry, 2016, 7, 2452-2456.	1.9	23
26	Comb Poly(Oligo(2â€Ethylâ€2â€Oxazoline)Methacrylate)â€Peptide Conjugates Prepared by Aqueous Cu(0)â€Mediated Polymerization and Reductive Amination. Macromolecular Rapid Communications, 2017, 38, 1600534.	2.0	22
27	Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives. Macromolecular Rapid Communications, 2016, 37, 356-361.	2.0	19
28	Why can Dispolreg 007 control the nitroxide mediated polymerization of methacrylates?. Polymer Chemistry, 2019, 10, 106-113.	1.9	18
29	Nitroxide mediated copolymerization of acrylates, methacrylates and styrene: The importance of side reactions in the polymerization of acrylates. European Polymer Journal, 2019, 110, 319-329.	2.6	15
30	Unprecedented Control over the Acrylate and Acrylamide Polymerization in Aqueous and Organic Media. ACS Symposium Series, 2015, , 29-45.	0.5	3